Окружность вписанная в треугольник делит его стороны пополам

Окружность, вписанная в треугольник. Теоремы и их рассмотрение

Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука «геометрия» от греческих слов «геос» — земля и «метрио» — измеряю.

Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие — теорема Пифагора.

Окружность вписанная в треугольник делит его стороны пополам Вам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза

Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:

В треугольник можно вписать только одну окружность.

При таком расположении окружность — вписанная, а треугольник — описанный около окружности.

Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:

Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.

Видео:ЕГЭ Математика Задание 6#27935Скачать

ЕГЭ Математика Задание 6#27935

Окружность, вписанная в равнобедренный треугольник

Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.

На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено — она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.

Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).

Окружность вписанная в треугольник делит его стороны пополам

Свойства теоремы об окружности, вписанной в треугольник:

  • Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
  • Радиус окружности (вписанной) — это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.

Видео:№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит однуСкачать

№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну

Окружность, вписанная в прямоугольный треугольник

Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.

Окружность вписанная в треугольник делит его стороны пополам

Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.

Есть хорошая формула, которая поможет высчитать площадь треугольника — периметр умножить на радиус вписанной в этот треугольник окружности.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулировка теоремы о вписанной окружности

В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:

Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

Окружность вписанная в треугольник делит его стороны пополам

На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.

Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Теорема о центре окружности, вписанной в треугольник

Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.

Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.

Видео:Вписанная окружность делит чевиану пополам. ЗАДАЧА - БЛЕСК!Скачать

Вписанная окружность делит чевиану пополам. ЗАДАЧА - БЛЕСК!

Узнать ещё

Знание — сила. Познавательная информация

Видео:Окружность, вписанная в треугольникСкачать

Окружность, вписанная в треугольник

Вписанная в треугольник окружность делит сторону на отрезки

Если в задаче вписанная в треугольник окружность делит его сторону на отрезки, один из возможных вариантов решения — использование свойства отрезков касательных к окружности, проведенных из одной точки.

Рассмотрим две задачи на вписанную в треугольник окружность, решение которых опирается на это свойство касательных.

Одна из сторон треугольника равна 30 см, а другая делится точкой касания вписанной окружности на отрезки длиной 12 см и 14 см, считая от конца неизвестной стороны. Найти радиус вписанной окружности.

Окружность вписанная в треугольник делит его стороны пополамДано: ∆ ABC,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AB, BC, AC,

AB=30 см, CM=12 см, BM=14 см.

1) По свойству касательных, отрезки касательных, проведенных из одной точки, равны:

CF=CM=12 см, BK=BM=14 см, AF=AK=AB-BK=30-14=16 см.

AC=AF+CF=16+12=28 см, BC=BM+CM=14+12=26 см.

2) По формуле Герона,

Окружность вписанная в треугольник делит его стороны пополам

где a, b, c — стороны треугольника, p — полупериметр,

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

3) Радиус вписанной окружности найдем по формуле

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

В треугольнике, периметр которого равен 60 см, одна из сторон делится точкой касания вписанной в него окружности на отрезки 24 см и 5 см. Найти площадь треугольника.

Окружность вписанная в треугольник делит его стороны пополамДано: ∆ ABC,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AB, BC, AC,

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

1) По свойству касательных, проведенных из одной точки, AF=AK=24 см, BM=BK=5 см, CF=CM= x см.

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Окружность вписанная в треугольник делит его стороны пополам

Следовательно, CM=CF=1 см, AB=AK+BK=29 см, BC=BM+CM=6 см, AC=AF+CF=25 см.

2) Полупериметр равен половине периметра: p=60:2=30 см.

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Вписанная окружность

Окружность вписанная в треугольник делит его стороны пополам

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Окружность вписанная в треугольник делит его стороны пополам
    • Четырехугольник
      Окружность вписанная в треугольник делит его стороны пополам
    • Многоугольник
      Окружность вписанная в треугольник делит его стороны пополам

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    💥 Видео

    Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторонСкачать

    Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Окружность, вписанная в треугольник. Как найти центр и радиус. Геометрия 7-8 классСкачать

    Окружность, вписанная в треугольник. Как найти центр и радиус. Геометрия 7-8 класс

    Радиус вписанной окружности #ShortsСкачать

    Радиус вписанной окружности #Shorts

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)

    Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

    Задача 6 №27932 ЕГЭ по математике. Урок 146

    Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

    Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Геометрия Центр окружности, вписанной в равнобедренный треугольник, делит его высоту, проведеннуюСкачать

    Геометрия Центр окружности, вписанной в равнобедренный треугольник, делит его высоту, проведенную

    9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

    9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

    Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классыСкачать

    Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классы
    Поделиться или сохранить к себе: