Окружность описанная около основания правильной четырехугольной пирамиды

Нахождение радиуса сферы (шара), описанной около правильной пирамиды

В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Формулы расчета радиуса сферы (шара)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Окружность описанная около основания правильной четырехугольной пирамиды

На этом рисунке и чертежах далее:

  • a – ребро основания пирамиды;
  • h – высота фигуры.

Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:

Окружность описанная около основания правильной четырехугольной пирамиды

Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:

Окружность описанная около основания правильной четырехугольной пирамиды

Правильная четырехугольная пирамида

Окружность описанная около основания правильной четырехугольной пирамиды

Радиус (R) описанной сферы/шара вычисляется следующим образом:

Окружность описанная около основания правильной четырехугольной пирамиды

Правильная шестиугольная пирамида

Окружность описанная около основания правильной четырехугольной пирамиды

Формула для нахождения радиус (R) сферы/шара выглядит так:

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Формулы и свойства правильной четырехугольной пирамиды

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Что собой представляет пирамида

Под пирамидой понимают геометрическую фигуру пространственную, которая получается в результате соединения всех углов многоугольника с одной точкой пространства. Рисунок ниже демонстрирует расположение линий (ребер) для четырехугольной и пятиугольной пирамид.

Окружность описанная около основания правильной четырехугольной пирамиды

Многоугольная грань фигуры называется ее основанием. Точка, где все треугольные грани соединяются, называется вершиной. Для определения высоты пирамиды отмеченные элементы являются важными.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Правильная треугольная пирамида.

Правильная треугольная пирамида – это пирамида, у которой основанием оказывается правильный треугольник, а вершина опускается в центр основания.

Окружность описанная около основания правильной четырехугольной пирамиды

Видео:№259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковойСкачать

№259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды – это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной , четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр .

Видео:Правильная пирамида № 258Скачать

Правильная пирамида № 258

Высота фигуры

Высотой пирамиды называется перпендикуляр, который из ее вершины опущен на плоскость основания. Важно понимать, что из каждой вершины, принадлежащей основанию фигуры, тоже можно провести перпендикуляр к соответствующей треугольной грани, однако он высотой не будет являться. Высота пирамиды – это единственный перпендикуляр, который является одной из важных ее линейных характеристик.

Каждому школьнику известно, что любая плоская фигура обладает геометрическим центром (в физике ему соответствует центр масс). Например, геометрический центр для произвольного треугольника определяется точкой пересечения его медиан, для параллелограмма – точкой пересечения диагоналей. Если высота пирамиды пересекает ее основание в геометрическом центре, то фигура называется прямой. Пирамида прямая, имеющая в основании многоугольник с одинаковыми сторонами и углами, называется правильной.

Окружность описанная около основания правильной четырехугольной пирамиды

Рисунок выше показывает, чем отличается неправильная пирамида от правильной. Видно, что высота неправильной фигуры лежит за пределами ее основания, в то время как у правильной шестиугольной пирамиды высота находится внутри фигуры, пересекая ее основание в центре геометрическом.

Важными свойствами всех правильных пирамид являются следующие:

  • все боковые грани представляют собой равнобедренные треугольники и равны друг другу;
  • длины боковых ребер и апофем являются одинаковыми.

Видео:10 класс, 33 урок, Правильная пирамидаСкачать

10 класс, 33 урок, Правильная пирамида

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Окружность описанная около основания правильной четырехугольной пирамиды

Мы видим что первая фигура имеет треугольное основание, вторая – четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Видео:11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать

11 класс. Геометрия. Объём пирамиды. 28.04.2020.

Объем пирамиды

Окружность описанная около основания правильной четырехугольной пирамиды

Формула для нахождения объема пирамиды через площадь основания и высоту:

<V= dfrac S h> , где S — площадь основания, h — высота пирамиды.

Видео:🔴 Стороны основания правильной шестиугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Стороны основания правильной шестиугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Окружность описанная около основания правильной четырехугольной пирамиды

боковые ребра образуют с плоскостью основания равные углы

Окружность описанная около основания правильной четырехугольной пирамиды

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Окружность описанная около основания правильной четырехугольной пирамиды

Верно и обратное.

Видео:Стереометрия, номер 33.1Скачать

Стереометрия, номер 33.1

Правильная пирамида с треугольным основанием

Фигура, которая получена с использованием произвольного треугольника и точки в пространстве, будет неправильной наклонной пирамидой в общем случае. Теперь представим, что исходный треугольник имеет одинаковые стороны, а точка пространства расположена точно над его геометрическим центром на расстоянии h от плоскости треугольника. Построенная с использованием этих исходных данных пирамида будет правильной.

Очевидно, что число ребер, сторон и вершин у правильной треугольной пирамиды будет таким же, как у пирамиды, построенной из произвольного треугольника.

Однако правильная фигура обладает некоторыми отличительными чертами:

  • ее высота, проведенная из вершины, точно пересечет основание в геометрическом центре (точка пересечения медиан);
  • боковая поверхность такой пирамиды образована тремя одинаковыми треугольниками, которые являются равнобедренными или равносторонними.

Правильная треугольная пирамида является не только чисто теоретическим геометрическим объектом. Некоторые структуры в природе имеют ее форму, например кристаллическая решетка алмаза, где атом углерода соединен с четырьмя такими же атомами ковалентными связями, или молекула метана, где вершины пирамиды образованы атомами водорода.

Окружность описанная около основания правильной четырехугольной пирамиды

Видео:Вычисление радиуса сферы, описанной около правильной треугольной пирамидыСкачать

Вычисление радиуса сферы, описанной около правильной треугольной пирамиды

Формулы для высоты правильной пирамиды

Существует четыре основных линейных характеристики для любой пирамиды правильной:

  • сторона основания;
  • боковое ребро;
  • апофема боковой грани;
  • высота фигуры.

Все они связаны математически друг с другом. Обозначим длину стороны основания символом a, высоту — h, апофему — hb и ребро — b. Формулы, которые эти величины связывают, имеют индивидуальный вид для соответствующей n-угольной пирамиды. Например, для правильной пирамиды четырехугольной высоту можно определить по формулам:

Эти формулы следуют из теоремы Пифагора при рассмотрении соответствующих прямоугольных треугольников внутри пирамиды.

Если рассматривается фигура с треугольным основанием, тогда справедливы следующие формулы для высоты правильной пирамиды:

Видео:Задание 24 ОГЭ по математике #7Скачать

Задание 24 ОГЭ по математике #7

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

Окружность описанная около основания правильной четырехугольной пирамиды

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Окружность описанная около основания правильной четырехугольной пирамиды

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Окружность описанная около основания правильной четырехугольной пирамиды

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Окружность описанная около основания правильной четырехугольной пирамиды

Видео:№258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания.Скачать

№258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Окружность описанная около основания правильной четырехугольной пирамиды

боковые ребра образуют с плоскостью основания равные углы

Окружность описанная около основания правильной четырехугольной пирамиды

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Окружность описанная около основания правильной четырехугольной пирамиды

Верно и обратное.

Видео:Нахождение радиуса сферы, описанной около пирамидыСкачать

Нахождение радиуса сферы, описанной около пирамиды

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Окружность описанная около основания правильной четырехугольной пирамиды

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Видео:🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Окружность описанная около основания правильной четырехугольной пирамиды

Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Окружность описанная около основания правильной четырехугольной пирамиды

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Окружность описанная около основания правильной четырехугольной пирамиды

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

🎥 Видео

ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

10 класс, 34 урок, Усеченная пирамидаСкачать

10 класс, 34 урок, Усеченная пирамида

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

№249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходитСкачать

№249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходит

Урок 38 Правильная четырехугольная пирамидаСкачать

Урок 38 Правильная четырехугольная пирамида
Поделиться или сохранить к себе: