Около окружности с центром о описана трапеция

Задача 8525 .

Условие

Около окружности с центром о описана трапеция

Около окружности с центром О описана трапеция ABCD с основаниями AD и BC.

А)Докажите, что ∠ВОС+∠AOD=180°
Б)Найдите отношение оснований трапеции, если известно, что АВ=CD, а площадь четырехугольника с вершинами в точках касания окружности со сторонами трапеции составляет 8/25 площади трапеции ABCD.

Решение

А)ВО, АО-биссектрисы, => ∠ВОA=90°
CО, DО-биссектрисы, => ∠CОD=90°
Значит, ∠ВОС+∠AOD=360°-90°-90°=180°

Б) Диагональ трапеции проходит через середину отрезка, концы которого – точки касания окружности с боковыми сторонами трапеции(так как трапеция равнобедренная).
Пусть AD=a, BC=b, EO1=h1, O1K=h2
ΔВО1С

ΔАО1D
=> b/a=h1/h2
=> h1=(b*h2)/a
Около окружности с центром о описана трапецияОколо окружности с центром о описана трапеция Около окружности с центром о описана трапеция

Видео:Около окружности с центром О описана трапецияСкачать

Около окружности с центром О описана трапеция

Решение №2583 Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.

Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.

а) Докажите, что треугольник АОВ прямоугольный.
б) Найдите отношение большего основания трапеции к меньшему, если известно, что АВ = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет frac площади трапеции ABCD.

Источник: Ященко ЕГЭ 2022 (36 вар)

а) Доказать , что в ΔАОВ ∠АОВ = 90° (тогда он прямоугольный) .

Около окружности с центром о описана трапеция

Окружность вписана в углы: ∠ВAD, ∠ADC, ∠DCB и ∠CBA. Центр окружности, которая вписана в угол, расположен на биссектрисе этого угла, значит АО, DO, СО, ВОбиссектрисы и делят соответствующие углы пополам.

∠ВAD + ∠CBA = 180°
∠ADC + ∠DCB = 180°

Как односторонние углы, при параллельных прямых AD||ВС (основания трапеции) и секущих AB и СD соответственно.
Зная о биссектрисах поделим всё на 2:

Рассмотрим треугольники ΔАВО и ΔDCO, сумма углов любого треугольника равна 180°, тогда:

∠AOB = ∠COD = 90°

Что и требовалось доказать.

б) Найти: frac , если АВ = СD, S_=fraccdot S_ :

Около окружности с центром о описана трапеция

Отрезки касательных к окружности, проведённые из одной точки, равны:

BM = BK
CM = CN
AK = AL
DL = DN

Т.к. AB = CD, то:

BK = СN = BM = CM = x
AK = DN = AL = DL = y

Проведём радиусы из точки О к касательным ВС и AD, тогда ОМ⊥ВС, OL⊥AD, точка О∈OM, O∈OL, значит МL это одна прямая и высота трапеции:

Около окружности с центром о описана трапеция

Проведём ещё одну высоту трапеции СН:

Около окружности с центром о описана трапеция

MC = LH, МCHL – прямоугольник, значит MC = LH = x , найдём HD:

HD = LD – LH = y – x

Из прямоугольного ΔСHD по теореме Пифагора найдём СН:

СН 2 + HD 2 = CD 2
CH 2 + (y – x) 2 = (y + x) 2
CH 2 = (y + x) 2 – (y – x) 2 = y 2 + 2xy + x 2 – y 2 + 2xy – x 2 = 4xy
CH=sqrt=2sqrt

Выразим площадь SABCD :

В четырёхугольнике проведём KMNL диагональ KN, прямые ВС и KN отсекают равные отрезки ВК = СN = x, значит они по теорема Фалеса параллельны ВС||KN, т.к. BC⊥LM, то KM⊥ML, значит угол между диагоналями ∠MSK = 90°.
Диагональ ML = 2sqrt , как высота трапеции.
Проведём BF||CD и пересекающая KN в точке Е. BCDF – параллелограмм, значит EN = BC = 2x.
Около окружности с центром о описана трапеция

ΔАВF подобен ΔВКЕ (∠В – общий, ∠ВКЕ = ∠ВАF – соответственные). Из пропорциональности сторон найдём КЕ:

Найдём диагональ KN:

Выразим площадь SKMNL :

S_=fraccdot MLcdot KNcdot sin angle MSK=fraccdot 2sqrtcdot fraccdot sin 90^=sqrtcdot fraccdot 1= frac<4xysqrt>

Подставим выраженные площади с исходное отношение:

Т.к. у нас у большее основание, а х меньшее, то их отношение равно 8.

Видео:🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Около окружности с центром о описана трапеция

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Около окружности с центром о описана трапеция

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Около окружности с центром о описана трапеция

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Около окружности с центром о описана трапеция

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Около окружности с центром о описана трапеция

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Около окружности с центром о описана трапеция

3. Треугольники Около окружности с центром о описана трапецияи Около окружности с центром о описана трапеция, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Около окружности с центром о описана трапеция

Отношение площадей этих треугольников есть Около окружности с центром о описана трапеция.

Около окружности с центром о описана трапеция

4. Треугольники Около окружности с центром о описана трапецияи Около окружности с центром о описана трапеция, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Около окружности с центром о описана трапеция

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Около окружности с центром о описана трапеция

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Около окружности с центром о описана трапеция

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Около окружности с центром о описана трапеция

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Около окружности с центром о описана трапеция

Видео:ОГЭ по математике. Задание 15Скачать

ОГЭ по математике. Задание 15

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Около окружности с центром о описана трапеция

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Около окружности с центром о описана трапеция

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Около окружности с центром о описана трапеция

Видео:ЕГЭ математика 2023 Вариант 2 задача 1Скачать

ЕГЭ математика 2023  Вариант 2 задача 1

Вписанная окружность

Если в трапецию вписана окружность с радиусом Около окружности с центром о описана трапецияи она делит боковую сторону точкой касания на два отрезка — Около окружности с центром о описана трапецияи Около окружности с центром о описана трапеция, то Около окружности с центром о описана трапеция

Около окружности с центром о описана трапеция

Видео:Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Площадь

Около окружности с центром о описана трапецияили Около окружности с центром о описана трапециягде Около окружности с центром о описана трапеция– средняя линия

Около окружности с центром о описана трапеция

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

📺 Видео

ЕГЭ 2022 16 вариант 3 задача.Скачать

ЕГЭ 2022 16 вариант 3 задача.

На окружности с центром O отмечены точки A и B так ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

На окружности с центром O отмечены точки A и B так ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

№146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, еслиСкачать

№146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, если

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Отрезки AC и BD – диаметры окружности с центром O ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Отрезки AC и BD – диаметры окружности с центром O ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

2035 В окружности с центром в точке О отрезки AC и BD диаметрыСкачать

2035 В окружности с центром в точке О отрезки AC и BD диаметры

№638. Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВСкачать

№638. Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВ

Около трапеции описана окружностьСкачать

Около трапеции описана окружность

2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

№147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВССкачать

№147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.
Поделиться или сохранить к себе: