Образом треугольника при движении является

Докажите, что при движении треугольник отображается на равный ему треугольник.

Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать

Геометрия 9 класс (Урок№29 - Параллельный перенос.)

Ваш ответ

Видео:9 класс, 30 урок, Понятие движенияСкачать

9 класс, 30 урок, Понятие движения

решение вопроса

Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать

Геометрия 9 класс (Урок№30 - Поворот.)

Похожие вопросы

  • Все категории
  • экономические 43,288
  • гуманитарные 33,620
  • юридические 17,900
  • школьный раздел 607,127
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:9 класс, 31 урок, Наложения и движенияСкачать

9 класс, 31 урок, Наложения и движения

Понятие движения

Вы будете перенаправлены на Автор24

Видео:Отображение плоскости на себя. Понятие движения. Наложения и движенияСкачать

Отображение плоскости на себя. Понятие движения. Наложения и движения

Отображение плоскости на себя

Отображение плоскости на себя — это такое соответствие каждой точке плоскости какой-либо точки этой же плоскости, при котором каждая точка плоскость будет сопоставленной для какой-либо точки.

Примерами отображения плоскости на себя могут являться осевая симметрия (рис. 1,а) и центральная симметрия (рис. 1,б).

Образом треугольника при движении является

Рисунок 1. а) осевая симметрия; б) центральная симметрия

Видео:ДВИЖЕНИЕ 9 класс геометрия АтанасянСкачать

ДВИЖЕНИЕ 9 класс геометрия Атанасян

Понятие движения

Введем теперь определение движения.

Движением плоскости называется такое отображение плоскости на себя, при котором сохраняются расстояния (рис. 2).

Образом треугольника при движении является

Рисунок 2. Пример движения

Видео:Геометрия 9 класс (Урок№28 - Отображение плоскости на себя. Понятие движения. Наложения и движения.)Скачать

Геометрия 9 класс (Урок№28 - Отображение плоскости на себя. Понятие движения. Наложения и движения.)

Теоремы, связанные с понятием движения

При движении отрезок отображается на равный ему отрезок.

Доказательство.

Пусть нам дан отрезок $MN$. Пусть при заданном движении плоскости точка $M$ отображается на точку $M_1$ этой плоскости, а точка $N$ отображается на точку $N_1$ этой плоскости. Возьмем произвольную точку $P$ отрезка $MN$. Пусть она отображается в точку $ P_1$ этой плоскости (рис. 3).

Образом треугольника при движении является

Рисунок 3. Отображение отрезка на отрезок при движении

Готовые работы на аналогичную тему

Так как точка $P$ принадлежит отрезку $MN$, то выполняется равенство

Так как, по определению движения, расстояния сохраняются, то

Значит, точка $P_1$ лежит на отрезке $M_1N_1$. В силу произвольности выбора точки $P_1$ получаем, что отрезок $MN$ при движении отобразится на отрезок $M_1N_1$. Равенство же этих отрезков сразу вытекает из определения движения.

Теорема доказана.

При движении треугольник отображается на равный треугольник.

Доказательство.

Пусть нам дан треугольник $ABC$. По теореме 1, отрезок $AB$ переходит в отрезок $A_1B_1$, отрезок $AC$ переходит в отрезок $A_1C_1$, отрезок $BC$ переходит в отрезок $B_1C_1$, причем $_1B_1$, $_1C_1$, $_1C_1$. Следовательно, по III признаку равенства треугольников, треугольник $ABC$ переходит в равный ему треугольник $A_1B_1C_1$.

Теорема доказана.

Аналогично можно доказать, что луч отображается на луч, угол отображается на равный ему угол.

Для формулирования следующей теоремы вначале ведем следующее определение.

Наложением называется такое движение плоскости, которое обладает следующими аксиомами:

  1. Если при движении совпадают концы двух отрезков, то совпадают и сами отрезки.
  2. От начала любого луча можно отложить отрезок, равный данному отрезку и притом только один.
  3. В любую полуплоскость от любого луча можно отложить угол, равный данному неразвернутому углу, причем только один.
  4. Любая фигура является равной самой себе.
  5. Если фигура 1 равна фигуре 2, то и фигура 2 равна фигуре 1.
  6. Если фигура 1 равна фигуре 2, а фигура 2 равна фигуре 3, то фигура 1 равна фигуре 3.

Любое движение является наложением.

Доказательство.

Рассмотрим движение $g$ треугольника $ABC$. По теореме 2, при движении $g$ треугольник $ABC$ переход в равный ему треугольник $A_1B_1C_1$. По определению равных треугольников получаем, что существует наложение $f$, отображающее точки $A,B и C$ на точки $A_1,B_1 и C_1$, соответственно. Докажем, что $g$ совпадает с $f$.

Предположим противное, что $g$ не совпадает с $f$. Тогда существует по крайней мере одна точка $M$, которая при движении $g$ переходит в точку $M_1$, а при наложении $f$ — в точку $M_2$. Так как, при $f$ и $g$ сохраняются расстояния, то имеем

То есть точка $A_1$ равноудалена от точек $M_1$ и $M_2$. Аналогично получим, что точки $B_1 и C_1$ равноудалены от точек $M_1$ и $M_2$. Значит точки $A_1,B_1 и C_1$ лежат на прямой, перпендикулярной к отрезку $M_1M_2$ и проходящей через его центр. Это не возможно, так как точки $A_1,B_1 и C_1$ не лежат на одной прямой. Следовательно, движение $g$ совпадает с наложением $f$.

Теорема доказана.

Видео:9 класс, 32 урок, Параллельный переносСкачать

9 класс, 32 урок, Параллельный перенос

Пример задачи на понятие движения

Доказать, что при движении угол отображается на равный ему угол.

Доказательство.

Пусть нам дан угол $AOB$. Пусть при заданном движении точки $A, O и B$ отображаются на точки $A_1, O_1 и B_1$. По теореме 2 получаем, что треугольник $AOB$ отображается на треугольник $A_1O_1B_1$, причем эти треугольники равны между собой. Следовательно, $angle AOB=angle A_1O_1B_1$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 15 04 2021

Видео:Модуль 2. Баллистика. Равноускоренное движение в плоскости.Скачать

Модуль 2. Баллистика. Равноускоренное движение в плоскости.

§ 1. Понятие движения

Отображение плоскости на себя

Слово «движение» вам знакомо. Но в геометрии оно имеет особый смысл. Какой именно, об этом вы узнаете из данной главы. А пока отметим, что с помощью движений удаётся находить красивые решения многих геометрических задач. Примеры таких решений вы найдёте в этой главе.

Представим себе, что каждой точке плоскости сопоставляется (ставится в соответствие) какая-то точка этой же плоскости, причём любая точка плоскости оказывается сопоставленной некоторой точке. Тогда говорят, что дано отображение плоскости на себя.

Фактически мы уже встречались с отображениями плоскости на себя — вспомним осевую симметрию (см. п. 48). Она даёт нам пример такого отображения. В самом деле, пусть а — ось симметрии (рис. 321). Возьмём произвольную точку М, не лежащую на прямой а, и построим симметричную ей точку М1 относительно прямой а. Для этого нужно провести перпендикуляр МР к прямой а и отложить на прямой МР отрезок РМ1, равный отрезку МР, так, как показано на рисунке 321. Точка М1 и будет искомой. Если же точка М лежит на прямой а, то симметричная ей точка М1 совпадает с точкой М. Мы видим, что с помощью осевой симметрии каждой точке М плоскости сопоставляется точка М, этой же плоскости. При этом любая точка М1 оказывается сопоставленной некоторой точке М. Это ясно из рисунка 321.

Образом треугольника при движении является

Итак, осевая симметрия представляет собой отображение плоскости на себя.

Рассмотрим теперь центральную симметрию плоскости (см. п. 48). Пусть О — центр симметрии. Каждой точке М плоскости сопоставляется точка М1, симметричная точке М относительно точки О (рис. 322). Попытайтесь самостоятельно убедиться в том, что центральная симметрия плоскости также представляет собой отображение плоскости на себя.

Образом треугольника при движении является

Понятие движения

Осевая симметрия обладает следующим важным свойством — это отображение плоскости на себя, которое сохраняет расстояния между точками.

Поясним, что это значит. Пусть М и N — какие-либо точки, а М1 и N1 — симметричные им точки относительно прямой а (рис. 323). Из точек N и N1 проведём перпендикуляры NP и N1P1 к прямой ММ1. Прямоугольные треугольники MNP и M1N1P1 равны по двум катетам: МР = М1Р1 и NP = N1P1 (объясните, почему эти катеты равны). Поэтому гипотенузы MN и M1N1 также равны.

Образом треугольника при движении является

Следовательно, расстояние между точками М и N равно расстоянию между симметричными им точками М1 и N1. Другие случаи расположения точек М, N и М1, N1 рассмотрите самостоятельно и убедитесь в том, что и в этих случаях MN = M1N1 (рис. 324). Таким образом, осевая симметрия является отображением, которое сохраняет расстояния между точками. Любое отображение, обладающее этим свойством, называется движением (или перемещением).

Образом треугольника при движении является

Итак, движение плоскости — это отображение плоскости на себя, сохраняющее расстояния.

Почему отображение, сохраняющее расстояния, называют движением (или перемещением), можно пояснить на примере осевой симметрии. Её можно представить как поворот плоскости в пространстве на 180° вокруг оси а. На рисунке 325 показано, каким образом происходит такой поворот.

Образом треугольника при движении является

Отметим, что центральная симметрия плоскости также является движением (пользуясь рисунком 326, убедитесь в этом самостоятельно).

Образом треугольника при движении является

Докажем следующую теорему:

При движении отрезок отображается на отрезок.

Пусть при заданном движении плоскости концы М и N отрезка MN отображаются в точки М1 и N1 (рис. 327). Докажем, что весь отрезок MN отображается на отрезок M1N1. Пусть Р — произвольная точка отрезка MN, Р1 — точка, в которую отображается точка Р. Тогда МР + PN = MN. Так как при движении расстояния сохраняются, то

Образом треугольника при движении является

Из равенств (1) получаем, что М1Р1 + P1N1 = M1N1, и, значит, точка Р1 лежит на отрезке M1N1 (если предположить, что это не так, то будет выполняться неравенство М1Р1 +P1N1 > M1N1). Итак, точки отрезка MN отображаются в точки отрезка M1N1.

Нужно ещё доказать, что в каждую точку Р1 отрезка M1N1 отображается какая-нибудь точка Р отрезка MN. Докажем это. Пусть Р1 — произвольная точка отрезка M1N1, и точка Р при заданном движении отображается в точку Р1. Из соотношений (1) и равенства M1N1 = М1Р1 + P1N1 следует, что МР + PN = MN, и, значит, точка Р лежит на отрезке MN. Теорема доказана.

При движении треугольник отображается на равный ему треугольник.

В самом деле, в силу доказанной теоремы при движении каждая сторона треугольника отображается на равный ей отрезок, поэтому и треугольник отображается на треугольник с соответственно равными сторонами, т. е. на равный треугольник.

Пользуясь доказанной теоремой, нетрудно убедиться в том, что при движении прямая отображается на прямую, луч — на луч, а угол — на равный ему угол.

Наложения и движения

Напомним, что в нашем курсе геометрии равенство фигур определяется с помощью наложений. Мы говорим, что фигура Ф равна фигуре Фп если фигуру Ф можно совместить наложением с фигурой Ф1. Понятие наложения в нашем курсе относится к основным понятиям геометрии, поэтому определение наложения не даётся. Под наложением фигуры Ф на фигуру Ф1 мы понимаем некоторое отображение фигуры Ф на фигуру Ф1 Более того, мы считаем, что при этом не только точки фигуры Ф, но и любая точка плоскости отображается в определённую точку плоскости, т. е. наложение — это отображение плоскости на себя.

Однако не всякое отображение плоскости на себя мы называем наложением. Наложения — это такие отображения плоскости на себя, которые обладают свойствами, выраженными в аксиомах (см. приложение 1, аксиомы 7—13). Эти аксиомы позволяют доказать все те свойства наложений, которые мы себе представляем наглядно и которыми пользуемся при доказательстве теорем и решении задач. Докажем, например, что при наложении различные точки отображаются в различные точки.

В самом деле, предположим, что это не так, т. е. при некотором наложении какие-то две точки А и В отображаются в одну и ту же точку С. Тогда фигура Ф1, состоящая из точек А и В, равна фигуре Ф2, состоящей из одной точки С. Отсюда следует, что Ф2 = Ф1 (аксиома 12), т. е. при некотором наложении фигура Ф2 отображается в фигуру Ф1. Но это невозможно, так как наложение — это отображение, а при любом отображении точке С ставится в соответствие только одна точка плоскости.

Из доказанного утверждения следует, что при наложении отрезок отображается на равный ему отрезок. Действительно, пусть при наложении концы А и В отрезка АВ отображаются в точки А1 и В1. Тогда отрезок АВ отображается на отрезок А1В1 (аксиома 7), и, следовательно, отрезок АВ равен отрезку А1В1. Так как равные отрезки имеют равные длины, то наложение является отображением плоскости на себя, сохраняющим расстояния, т. е. любое наложение является движением плоскости.

Докажем, что верно и обратное утверждение.

Любое движение является наложением.

Рассмотрим произвольное движение (обозначим его буквой g) и докажем, что оно является наложением. Возьмём какой-нибудь треугольник АВС. При движении g он отображается на равный ему треугольник А1В1С1. По определению равных треугольников существует наложение ƒ, при котором точки А, В и С отображаются соответственно в точки А1, В1 и С1.

Докажем, что движение g совпадает с наложением ƒ. Предположим, что это не так. Тогда на плоскости найдётся хотя бы одна такая точка М, которая при движении g отображается в точку М„ а при наложении ƒ — в другую точку М2. Так как при отображениях ƒ u g сохраняются расстояния, то AM = А1М1, AM = А1М2, поэтому A1M1 = А1М2, т. е. точка А1 равноудалена от точек М1 и М2 (рис. 328). Аналогично доказывается, что точки В1 и С1 равноудалены от точек М1 и М2. Отсюда следует, что точки А1, В1 и С1 лежат на серединном перпендикуляре к отрезку М1М2. Но это невозможно, так как вершины треугольника А1В1С1 не лежат на одной прямой. Таким образом, отображения ƒ u g совпадают, т. е. движение g является наложением. Теорема доказана.

Образом треугольника при движении является

При движении любая фигура отображается на равную ей фигуру.

Задачи

1148. Докажите, что при осевой симметрии плоскости:

а) прямая, параллельная оси симметрии, отображается на прямую, параллельную оси симметрии;
б) прямая, перпендикулярная к оси симметрии, отображается на себя.

1149. Докажите, что при центральной симметрии плоскости:

а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую;
б) прямая, проходящая через центр симметрии, отображается на себя.

1150. Докажите, что при движении угол отображается на равный ему угол.

Пусть при данном движении угол АОВ отображается на угол A1O1B1, причём точки А, О, В отображаются соответственно в точки A1, О1, В1. Так как при движении сохраняются расстояния, то ОА = О1А1, ОВ = О1В1. Если угол АОВ неразвёрнутый, то треугольники АОВ и А1О1В1 равны по трём сторонам, и, следовательно, ∠AOB = ∠A1O1B1. Если угол АОВ развёрнутый, то и угол А1О1В1 развёрнутый (докажите это), поэтому эти углы равны.

1151. Докажите, что при движении параллельные прямые отображаются на параллельные прямые.

1152. Докажите, что при движении: а) параллелограмм отображается на параллелограмм; б) трапеция отображается на трапецию; в) ромб отображается на ромб; г) прямоугольник отображается на прямоугольник, а квадрат — на квадрат.

1153. Докажите, что при движении окружность отображается на окружность того же радиуса.

1154. Докажите, что отображение плоскости, при котором каждая точка отображается на себя, является наложением.

1155. АВС и А1В1С1 — произвольные треугольники. Докажите, что существует не более одного движения, при котором точки А, В и С отображаются в точки А1, В1, С1.

1156. В треугольниках АВС и А1В1С1 АВ = А1В1, АС = А1С1, ВС = В1С1. Докажите, что существует движение, при котором точки А, В и С отображаются в точки А1, В1 и С1, и притом только одно.

По условию задачи треугольники АВС и А1В1С1 равны по трём сторонам. Следовательно, существует наложение, т. е. движение, при котором точки А, В и С отображаются соответственно в точки А1, В1 и С1. Это движение является единственным движением, при котором точки А, В и С отображаются соответственно в точки А1, В1 и C1 (задача 1155).

1157. Докажите, что два параллелограмма равны, если смежные стороны и угол между ними одного параллелограмма соответственно равны смежным сторонам и углу между ними другого параллелограмма.

1158. Даны две прямые а и b. Постройте прямую, на которую отображается прямая b при осевой симметрии с осью а.

1159. Даны прямая а и четырёхугольник ABCD. Постройте фигуру F, на которую отображается данный четырёхугольник при осевой симметрии с осью а. Что представляет собой фигура F?

1160 Даны точка О и прямая b. Постройте прямую, на которую отображается прямая b при центральной симметрии с центром О.

1161 Даны точка О и треугольник АВС. Постройте фигуру F, на которую отображается треугольник АВС при центральной симметрии с центром О. Что представляет собой фигура F?

Ответы к задачам

1151. Указание. Доказать методом от противного.

1154. Указание. Воспользоваться теоремой п. 119.

1155. Указание. Доказательство провести методом от противного (см. доказательство теоремы п. 119).

1157. Указание. Воспользоваться задачами 1156 и 1051.

1158. Указание. Сначала построить образы каких-нибудь двух точек прямой b.

1159. F — четырёхугольник.

1160. Указание. Задача решается аналогично задаче 1158.

📸 Видео

Наложения и движения | Геометрия 7-9 класс #114 | ИнфоурокСкачать

Наложения и движения | Геометрия 7-9 класс #114 | Инфоурок

Параллельный переносСкачать

Параллельный перенос

9 класс. Геометрия. Геометрические преобразования. Движение. Симметрия. Гомотетия. Подобие. Урок #8Скачать

9 класс. Геометрия. Геометрические преобразования. Движение. Симметрия. Гомотетия. Подобие. Урок #8

113 Понятие движенияСкачать

113 Понятие движения

11 класс, 12 урок, Параллельный переносСкачать

11 класс, 12 урок, Параллельный перенос

11 класс, 9 урок, Центральная симметрияСкачать

11 класс, 9 урок, Центральная симметрия

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

114 Наложения и движенияСкачать

114 Наложения и движения

8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Геометрия 11 класс (Урок№4 - Движения в пространстве.)Скачать

Геометрия 11 класс (Урок№4 - Движения в пространстве.)

Решение задач по теме: "Понятие движения. Осевая и центральная симметрии"Скачать

Решение задач по теме: "Понятие движения.  Осевая и центральная симметрии"
Поделиться или сохранить к себе: