Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра
Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.
Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.
Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.
Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле
- S – площадь любой грани,
- H – высота, опущенная на эту грань
- Правильный тетраэдр – частный вид тетраэдра
- Вычисление объема тетраэдра, если известны координаты его вершин
- Нахождение объема тетраэдра: формула и задачи
- Формула вычисления объема тетраэдра
- 1. Общая формула (через площадь основания и высоту)
- 2. Объем правильного тетраэдра
- Примеры задач
- Объем тетраэдра площадь треугольника
- 📺 Видео
Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
Правильный тетраэдр – частный вид тетраэдра
Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:
- Все грани равны.
- Все плоские углы правильного тетраэдра равны 60°
- Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
- Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).
Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой
, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим
Вынесем 1/2a. Получим
Применим формулу разность квадратов
После небольших преобразований получим
Объем любого тетраэдра можно рассчитать по формуле
,
где ,
Подставив эти значения, получим
Таким образом формула объема для правильного тетраэдра
где a –ребро тетраэдра
Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать
Вычисление объема тетраэдра, если известны координаты его вершин
Пусть нам даны координаты вершин тетраэдра
Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула
Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать
Нахождение объема тетраэдра: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем тетраэдра и разберем примеры решения задач для закрепления материала.
Видео:Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать
Формула вычисления объема тетраэдра
1. Общая формула (через площадь основания и высоту)
Объем (V) тетраэдра считается также, как и объем любой пирамиды. Он равняется одной третьей произведения площади любой грани и высоты, опущенной на нее:
- S – площадь грани ABC, в данном случае выступающего в роли основания
2. Объем правильного тетраэдра
В правильном тетраэдре все грани являются равносторонними треугольниками. Объем данной фигуры равен одной двенадцатой произведения длины его ребра в кубе на квадратный корень из числа 2.
Т.к. это правильный тетраэдр, все его ребра равны (AB = BC = AC = AD = BD = CD).
Видео:11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать
Примеры задач
Задание 1
Площадь одной из граней тетраэдра равна 24 см 2 , а высоту, опущенная на нее – 9 см. Найдите объем фигуры.
Решение:
Применим общую формулу и получаем:
Задание 2
Дан правильный тетраэдр, ребро которого равняется 8 см. Найдите его объем.
Решение:
Воспользуемся формулой для расчета объема правильной фигуры:
Видео:Как вычислить расстояние между скрещивающимися прямыми через объем тетраэдра? Метод объемов 2Скачать
Объем тетраэдра площадь треугольника
Из основной формулы для объёма тетраэдра
(1),
где S – площадь любой грани, а H – опущенная на нее высота, можно вывести еще целый ряд формул, выражающих объём через различные элементы тетраэдра. Приведем эти формулы для тетраэдра ABCD.
(2) ,
где ∠ (AD,ABC) – угол между ребром AD и плоскостью грани ABC;
(3) ,
где ∠ (ABC,ABD) – угол между гранями ABC и ABD;
(4) ,
где |AB,CD| – расстояние между противоположными ребрами AB и CD, ∠ (AB,CD) – угол между этими ребрами.
Формулы (2)–(4) можно использовать для нахождения величин углов между прямыми и плоскостями; особенно полезна формула (4), с помощью которой можно находить расстояние между скрещивающимися прямыми AB иCD.
Формулы (2) и (3) аналогичны формуле S = (1/2)absin C для площади треугольника. Формуле S = rp аналогична формула
(5) ,
где r – радиус вписанной сферы тетраэдра, Σ – его полная поверхность (сумма площадей всех граней). Имеется и красивая формула, связывающая объём тетраэдра с радиусом R его описанной сферы (формула Крелле):
(6) ,
где Δ – площадь треугольника, стороны которого численно равны произведениям противоположных ребер (AB × CD, AC × BD,AD × BC). Из формулы (2) и теоремы косинусов для трехгранных углов (см. Сферическая тригонометрия) можно вывести формулу, аналогичную формуле Герона для треугольников:
(7) ,
где α, β, γ – плоские углы BDC, CDA, ADB при вершине D, δ = (α+β+γ)/2 – их полусумма.
Наконец, приведем векторную формулу:
(8) ,
где внутри модуля стоит смешанное произведение векторов. С помощью этой формулы можно вычислять объём тетраэдра, зная координаты его вершин.
📺 Видео
Математика без Ху!ни. Смешанное произведение векторовСкачать
Объём тетраэдра 19 Найдите объём многогранника, вершинами которого являются середины рёберСкачать
Объем пирамиды. Практическая часть. 11 класс.Скачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Объём пирамидыСкачать
Видеоурок "Объем пирамиды. 11 класс" (7 мин).Скачать
30 Стереометрия на ЕГЭ по математике. Объем пирамидыСкачать
Как объем пирамиды выразить через объем призмы. Почему именно 1/3 площади основания на высоту?Скачать
11 класс, 35 урок, Объем пирамидыСкачать
Площадь треугольника, построенного на векторахСкачать
ОБЪЕМ ПИРАМИДЫСкачать
10 класс, 12 урок, ТетраэдрСкачать
🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
Объем пирамиды. Урок 16. Геометрия 11 класс.Скачать