- Онлайн калькулятор
- Если известны длина стороны а и основания b
- Формула
- Пример
- Если известны длина стороны а и угол α
- Формула
- Пример
- Если известны длина стороны а и угол β
- Формула
- Пример
- Если известны длина стороны b и угол α
- Формула
- Пример
- Если известны длина стороны b и угол β
- Высота равнобедренного треугольника
- Свойства высоты равнобедренного треугольника
- Свойства высоты в равнобедренном треугольнике
- Свойство 1
- Свойство 2
- Свойство 3
- Пример задачи
- 🎬 Видео
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Онлайн калькулятор
Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):
- длину двух равных сторон (a) и длину основания (b)
- длину двух равных сторон (a) и угол α
- длину двух равных сторон (a) и угол β
- длину основания (b) и угол α
- длину основания (b) и угол β
Введите их в соответствующие поля и получите результат.
Если известны длина стороны а и основания b
Чему равна высота h равнобедренного треугольника если длина сторон , а длина основания
Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?
Формула
h = √ a 2 — ( b /2) 2
Пример
Если сторона a = 10 см, а сторона b = 5 см, то:
h = √ 10 2 — ( 5 /2) 2 = √ 100 — 6.25 ≈ 9.68 см
Если известны длина стороны а и угол α
Чему равна высота h равнобедренного треугольника если длина сторон , а угол
Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?
Формула
Пример
Если сторона a = 5 см, а ∠α = 45°, то:
h = 5⋅sin 45 ≈ 3,53 см
Если известны длина стороны а и угол β
Чему равна высота h равнобедренного треугольника если длина сторон , а угол
Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?
Формула
Пример
Если сторона a = 5 см, а ∠β = 30°, то:
Если известны длина стороны b и угол α
Чему равна высота h равнобедренного треугольника если длина основания , а угол
Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?
Формула
Пример
Если сторона b = 20 см, а ∠α = 35°, то:
Если известны длина стороны b и угол β
Чему равна высота h равнобедренного треугольника если длина основания , а угол
Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?
Видео:Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать
Высота равнобедренного треугольника
Равнобедренным треугольником называется такой треугольник, у которого две из трех сторон равны между собой. Равные стороны считаются боковыми сторонами а, а третья сторона в называется основанием равнобедренного треугольника.
Соответственно, в таком треугольнике можно провести три высоты, две из которых будут равны между собой, аналогично сторонам — это высоты, опущенные на боковую сторону треугольника а, а третья высота опускается на основание. Высота треугольника проводится из угла треугольника к противолежащей стороне под прямым углом. Большинство задач с высотой треугольника решаются через прямоугольные треугольники, которые она образует.
Рассмотрим каждый случай по отдельности.
Высота равнобедренного треугольника, опущенная на основание, обладает рядом индивидуальных свойств, присущих только ей и не распространяющихся на другие высоты в таком треугольнике. В частности, высота, проведенная к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой, проведенным к основанию, следовательно, она не только образует прямой угол с основанием, но и делит его на две равные части, как медиана, и аналогично делит угол пополам, как биссектриса. В итоге, высота является своеобразной осью симметрии треугольника и разделяет его на два конгруэнтных прямоугольных треугольника. В таком треугольнике высота является катетом, и чтобы найти ее длину необходимо соотнести стороны равнобедренного треугольника со сторонами прямоугольного. Боковая сторона равнобедренного треугольника становится гипотенузой, а чтобы определить второй катет, основание равнобедренного треугольника нужно разделить пополам, по свойству медианы.
Длина высоты равнобедренного треугольника равна по теореме Пифагора квадратному корню из суммы квадрата боковой стороны равнобедренного треугольника и четверти квадрата основания равнобедренного треугольника:
Второй случай, когда условиями задачи нужно найти высоту, опущенную на боковую сторону равнобедренного треугольника, раскрывается проще всего через площадь треугольника.
Площадь любого треугольника можно найти несколькими способами — например, через три стороны треугольника по формуле Герона, или через высоту, умножив ее на половину стороны, на которую она опущена. И тем, и другим способом получаются одинаковые значения площади, следовательно обе эти формулы можно друг к другу приравнять и отсюда вывести окончательную формулу высоты, опущенную на боковую сторону равнобедренного треугольника.
Формула Герона для равнобедренного треугольника будет иметь несколько упрощенный вид за счет того, что значения боковых сторон повторяются:
Площадь равнобедренного треугольника через высоту, опущенную к боковой стороне
Эту же формулу можно применять для нахождения любой высоты в равнобедренном треугольнике, если поменять в формуле соответствующие стороны местами.
Формула высоты равнобедренного треугольника через боковую сторону и угол при основании α: h=a sinα
Формула через боковую сторону и угол напротив основания β:
Формула через основание и угол при нем α:
через основание и угол противолежащий ему β:
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Свойства высоты равнобедренного треугольника
В данной публикации мы рассмотрим основные свойства высоты равнобедренного треугольника, а также разберем примеры решения задач по данной теме.
Примечание: треугольник называется равнобедренным, если две его стороны равны (боковые). Третья сторона называется основанием.
Видео:НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать
Свойства высоты в равнобедренном треугольнике
Свойство 1
В равнобедренном треугольнике две высоты, проведенные к боковым сторонам, равны.
Обратная формулировка: Если в треугольнике две высоты равны, значит он является равнобедренным.
Свойство 2
В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.
- BD – высота, проведенная к основанию AC;
- BD – медиана, следовательно, AD = DC;
- BD – биссектриса, следовательно, угол α равен углу β.
- BD – серединный перпендикуляр к стороне AC.
Свойство 3
Если известны стороны/углы равнобедренного треугольника, то:
1. Длина высоты ha, опущенной на основание a, вычисляется по формуле:
2. Длина высоты hb, проведенной к боковой стороне b, равняется:
p – это полупериметр треугольника, рассчитывается таким образом:
3. Высоту к боковой стороне можно найти через синус угла и длину стороны треугольника:
Примечание: к равнобедренному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Пример задачи
Задача 1
Дан равнобедренный треугольник, основание которого равно 15 см, а боковая сторона – 12 см. Найдите длину высоты, опущенной к основанию.
Решение
Воспользуемся первой формулой, представленной в Свойстве 3:
Задача 2
Найдите высоту, проведенную к боковой стороне равнобедренного треугольника длиной 13 см. Основание фигуры равняется 10 см.
Решение
Для начала вычислим полупериметр треугольника:
Теперь применим соответствующую формулу для нахождения высоты (представлена в Свойстве 3):
🎬 Видео
Высота, биссектриса, медиана. 7 класс.Скачать
№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать
№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать
Найти высоту, проведенную к боковой стороне равнобедренного треугольника.Скачать
Свойства равнобедренного треугольника. 7 класс.Скачать
Формулы равностороннего треугольника #shortsСкачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Построение высоты в треугольникеСкачать
Нахождение сторон равнобедренного треугольникаСкачать
Теорема о свойстве медианы равнобедренного треугольникаСкачать
Построение высоты равнобедренного треугольника с помощью циркуля и линейкиСкачать
№488. Найдите: а) высоту равностороннего треугольника, если его сторона равна 6 см;Скачать
№261. Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны.Скачать
Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10.Скачать
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать