Найти треугольники внутри треугольника

Треугольник вписанный в окружность

Найти треугольники внутри треугольника

Содержание
  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство
  12. Треугольник. Формулы и свойства треугольников.
  13. Типы треугольников
  14. По величине углов
  15. По числу равных сторон
  16. Вершины углы и стороны треугольника
  17. Свойства углов и сторон треугольника
  18. Теорема синусов
  19. Теорема косинусов
  20. Теорема о проекциях
  21. Формулы для вычисления длин сторон треугольника
  22. Медианы треугольника
  23. Свойства медиан треугольника:
  24. Формулы медиан треугольника
  25. Биссектрисы треугольника
  26. Свойства биссектрис треугольника:
  27. Формулы биссектрис треугольника
  28. Высоты треугольника
  29. Свойства высот треугольника
  30. Формулы высот треугольника
  31. Окружность вписанная в треугольник
  32. Свойства окружности вписанной в треугольник
  33. Формулы радиуса окружности вписанной в треугольник
  34. Окружность описанная вокруг треугольника
  35. Свойства окружности описанной вокруг треугольника
  36. Формулы радиуса окружности описанной вокруг треугольника
  37. Связь между вписанной и описанной окружностями треугольника
  38. Средняя линия треугольника
  39. Свойства средней линии треугольника
  40. Периметр треугольника
  41. Формулы площади треугольника
  42. Формула Герона
  43. Равенство треугольников
  44. Признаки равенства треугольников
  45. Первый признак равенства треугольников — по двум сторонам и углу между ними
  46. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  47. Третий признак равенства треугольников — по трем сторонам
  48. Подобие треугольников
  49. Признаки подобия треугольников
  50. Первый признак подобия треугольников
  51. Второй признак подобия треугольников
  52. Третий признак подобия треугольников
  53. math4school.ru
  54. Треугольники
  55. Основные свойства
  56. Равенство треугольников
  57. Подобие треугольников
  58. Медианы треугольника
  59. Биссектрисы треугольника
  60. Высоты треугольника
  61. Серединные перпендикуляры
  62. Окружность, вписанная в треугольник
  63. Окружность, описанная около треугольника
  64. Расположение центра описанной окружности
  65. Равнобедренный треугольник
  66. Равносторонний треугольник
  67. Прямоугольный треугольник
  68. Вневписанные окружности
  69. Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Найти треугольники внутри треугольника

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Найти треугольники внутри треугольника

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Треугольник. Формулы и свойства треугольников.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Типы треугольников

По величине углов

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

По числу равных сторон

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Найти треугольники внутри треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Где находится точка в треугольнике заданном координатами вершин, внутри или вне треугольника.Скачать

Где находится точка в треугольнике заданном координатами вершин, внутри или вне треугольника.

Медианы треугольника

Найти треугольники внутри треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Треугольник. Коррекционный патерн волнового анализа ЭллиоттаСкачать

Треугольник. Коррекционный патерн волнового анализа Эллиотта

Биссектрисы треугольника

Найти треугольники внутри треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Высоты треугольника

Найти треугольники внутри треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Выживший летчик рассказал, что он увидел в Бермудском треугольникеСкачать

Выживший летчик рассказал, что он увидел в Бермудском треугольнике

Окружность вписанная в треугольник

Найти треугольники внутри треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Алгоритмы. Попадание точки в треугольникСкачать

Алгоритмы. Попадание точки в треугольник

Окружность описанная вокруг треугольника

Найти треугольники внутри треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Задача найти площади треугольников при пересечении медианСкачать

Задача найти площади треугольников при пересечении медиан

Связь между вписанной и описанной окружностями треугольника

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Средняя линия треугольника

Свойства средней линии треугольника

Найти треугольники внутри треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

Периметр треугольника

Найти треугольники внутри треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 класс

Формулы площади треугольника

Найти треугольники внутри треугольника

Формула Герона

S =a · b · с
4R

Видео:Как найти величины углов всех треугольников. Сумма углов треугольника. Геометрия 7 класс.Скачать

Как найти величины углов всех треугольников. Сумма углов треугольника. Геометрия 7 класс.

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Подобие треугольников

Найти треугольники внутри треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Эта Находка в Бермудском Треугольнике Испугала Всех УченыхСкачать

Эта Находка в Бермудском Треугольнике Испугала Всех Ученых

math4school.ru

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Треугольники

Основные свойства

Найти треугольники внутри треугольника

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.

Сумма углов треугольника равна 180°:

Найти треугольники внутри треугольника

Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:

Найти треугольники внутри треугольника

Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:

Найти треугольники внутри треугольника

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна её половине:

Найти треугольники внутри треугольника

Равенство треугольников

Найти треугольники внутри треугольника

Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:

Найти треугольники внутри треугольника

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

Найти треугольники внутри треугольника

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Третий признак равенства треугольников.

Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:

Найти треугольники внутри треугольника

Подобие треугольников

Найти треугольники внутри треугольника

Подобными называются треугольники, у которых соответствующие стороны пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия:

Найти треугольники внутри треугольника

Два треугольника подобны, если:

  • Два угла одного треугольника равны двум углам другого треугольника.
  • Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны.
  • Стороны одного треугольника пропорциональны сторонам другого.

У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:

Найти треугольники внутри треугольника

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Найти треугольники внутри треугольника

Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:

Найти треугольники внутри треугольника

Медианы треугольника

Найти треугольники внутри треугольника

Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:

Найти треугольники внутри треугольника

  • Медиана делит треугольник на два равновеликих (с равными площадями) треугольника.
  • Три медианы треугольника делят его на шесть равновеликих треугольников:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Длины медиан, проведённых к соответствующим сторонам треугольника, равны:

Найти треугольники внутри треугольника

Биссектрисы треугольника

Найти треугольники внутри треугольника

Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.

Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.

Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:

Найти треугольники внутри треугольника

Длина биссектрисы угла А :

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.

Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

BL – биссектриса угла В ;

ВЕ – биссектриса внешнего угла СВК :

Найти треугольники внутри треугольника

Высоты треугольника

Найти треугольники внутри треугольника

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Высоты треугольника обратно пропорциональны его сторонам:

Найти треугольники внутри треугольника

Длина высоты, проведённой к стороне а :

Найти треугольники внутри треугольника

Серединные перпендикуляры

Найти треугольники внутри треугольника

Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.

Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.

Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.

Окружность, вписанная в треугольник

Найти треугольники внутри треугольника

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:

Найти треугольники внутри треугольника

Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:

Найти треугольники внутри треугольника

Окружность, описанная около треугольника

Найти треугольники внутри треугольника

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Радиус описанной окружности:

Найти треугольники внутри треугольника

Расположение центра описанной окружности

Найти треугольники внутри треугольникаНайти треугольники внутри треугольникаНайти треугольники внутри треугольникаЦентр описанной окружности остроугольного треугольника расположен внутри треугольника.Центр описанной окружности прямоугольного треугольника совпадает с серединой его гипотенузы.Центр описанной окружности тупоугольного треугольника расположен вне треугольника.

Равнобедренный треугольник

Найти треугольники внутри треугольника

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.

Найти треугольники внутри треугольника

Основные формулы для равнобедренного треугольника:

Найти треугольники внутри треугольника

Равносторонний треугольник

Найти треугольники внутри треугольника

Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Все углы равностороннего треугольника равны:

Найти треугольники внутри треугольника

Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:

Найти треугольники внутри треугольника

Основные соотношения для элементов равностороннего треугольника

Найти треугольники внутри треугольника

Прямоугольный треугольник

Найти треугольники внутри треугольника

Треугольник называется прямоугольным, если у него есть прямой угол.

Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Прямоугольные треугольники равны если у них равны:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.
  • одному острому углу;
  • из пропорциональности двух катетов;
  • из пропорциональности катета и гипотенузы.

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:

Найти треугольники внутри треугольника

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:

Найти треугольники внутри треугольника

Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:

Найти треугольники внутри треугольника

Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:

Найти треугольники внутри треугольника

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:

Найти треугольники внутри треугольника

Площадь прямоугольного треугольника можно определить

через катеты: Найти треугольники внутри треугольника

через катет и острый угол: Найти треугольники внутри треугольника

через гипотенузу и острый угол: Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Центр описанной окружности совпадает с серединой гипотенузы.

Радиус описанной окружности:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

Радиус вписанной окружности:

Найти треугольники внутри треугольника

Вневписанные окружности

Найти треугольники внутри треугольника

Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.

Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Так точка О1 , центр одной из вневписанных окружностей Δ ABC , лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C .

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.

Δ ABC является ортоцентричным в Δ О1О2О3 (точки A , B и C – основания высот в Δ О1О2О3 ).

В Δ ABC углы равны 180°–2 О1 , 180°–2 О2 , 180°–2 О3 .

Радиус окружности, описанной около Δ О1О2О3 , равен 2 R , где R – радиус окружности, описанной около Δ ABC .

Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .

Если ra , rb , rс – радиусы вневписанных окружностей в Δ ABC , то в Δ ABC верно:

для rНайти треугольники внутри треугольника

для R – Найти треугольники внутри треугольника

для S – Найти треугольники внутри треугольника

для самих ra , rb , rсНайти треугольники внутри треугольника

Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Найти треугольники внутри треугольника

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Найти треугольники внутри треугольника

Найти треугольники внутри треугольника

  • если c 2 > a 2 +b 2 , то угол γ – тупой ( cos γ
  • если c 2 2 +b 2 , то угол γ – острый ( cos γ > 0 );
  • если c 2 = a 2 +b 2 , то угол γ – прямой ( cos γ = 0 ).

Найти треугольники внутри треугольника

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:

Найти треугольники внутри треугольника

Теорема тангенсов (формула Региомонтана):

Поделиться или сохранить к себе: