Найти сторону треугольника через синус

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Неверно введено число.

Неверно задан треугольник.

Стороны треугольника: теорема синусов

Введите стороны треугольника :

a=
β=— в градусах
γ=— в градусах

Количество знаков после разделителя дроби в числах:

b=
c=

Теория

Найти сторону треугольника через синус

Теорема синусов: стороны треугольника пропорциональны синусам противолежащих углов.

Найти сторону треугольника через синус

Если известны одна сторона и два прилежащих угла, то с помощью теоремы синусов можно вычислить остальные две стороны треугольника. Например пусть известны сторона a и углы γ и β. С учетом того, что сумма всех углов треугольника равна 180 градусов, угол α будет равен:

Найти сторону треугольника через синус

Тогда остальные стороны вычисляются по следующим формулам:

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Все формулы для треугольника

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Найти сторону треугольника через синус

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Найти сторону треугольника через синус

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Найти сторону треугольника через синус

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Найти сторону треугольника через синус

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Найти сторону треугольника через синус

Формулы для катета, ( b ):

Найти сторону треугольника через синус

Формулы для гипотенузы, ( c ):

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Формулы сторон по теореме Пифагора, ( a , b ):

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Видео:9 класс, 13 урок, Теорема синусовСкачать

9 класс, 13 урок, Теорема синусов

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Найти сторону треугольника через синус

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Формулы длины равных сторон , (a):

Найти сторону треугольника через синус

Найти сторону треугольника через синус

Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Найти сторону треугольника через синус H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Найти сторону треугольника через синус

Формула длины высоты через сторону и угол, ( H ):

Найти сторону треугольника через синус

Формула длины высоты через сторону и площадь, ( H ):

Найти сторону треугольника через синус

Формула длины высоты через стороны и радиус, ( H ):

Видео:Решение задачи с применением теоремы синусовСкачать

Решение задачи с применением теоремы синусов

Теорема синусов

Найти сторону треугольника через синус

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Найти сторону треугольника через синус

Формула теоремы синусов:

Найти сторону треугольника через синус

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Найти сторону треугольника через синус

Из этой формулы мы получаем два соотношения:


    Найти сторону треугольника через синус

Найти сторону треугольника через синус
На b сокращаем, синусы переносим в знаменатели:
Найти сторону треугольника через синус

  • Найти сторону треугольника через синус
    bc sinα = ca sinβ
    Найти сторону треугольника через синус
  • Из этих двух соотношений получаем:

    Найти сторону треугольника через синус

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Найти сторону треугольника через синус

    Найти сторону треугольника через синус

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Найти сторону треугольника через синус

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Найти сторону треугольника через синус

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Найти сторону треугольника через синус

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Найти сторону треугольника через синус

    Вспомним свойство вписанного в окружность четырёхугольника:

    Найти сторону треугольника через синус

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Найти сторону треугольника через синус

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Найти сторону треугольника через синус

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Известен косинус угла треугольника, найти сторонуСкачать

    Известен косинус угла треугольника, найти сторону

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Найти сторону треугольника через синус

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Найти сторону треугольника через синус

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Найти сторону треугольника через синус

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Найти сторону треугольника через синус

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Найти сторону треугольника через синус

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Найти сторону треугольника через синус

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Найти сторону треугольника через синус

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:9 класс, 15 урок, Решение треугольниковСкачать

    9 класс, 15 урок, Решение треугольников

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Найти сторону треугольника через синус
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Найти сторону треугольника через синус

    Найти сторону треугольника через синус

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

    Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Найти сторону треугольника через синус

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    📹 Видео

    Почти никто не решил ➜ Найдите сторону треугольникаСкачать

    Почти никто не решил ➜ Найдите сторону треугольника

    Найдите третью сторону треугольникаСкачать

    Найдите третью сторону треугольника

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

    ОГЭ по математике. В треугольнике АБС известно три стороны. Найди косинус угла. (Вар.8) √ 16Скачать

    ОГЭ по математике. В треугольнике АБС известно три стороны. Найди косинус угла. (Вар.8) √ 16

    ОГЭ 16 задание. Найти гипотенузу, если известен катет и синусСкачать

    ОГЭ 16 задание. Найти гипотенузу, если известен катет и синус

    Задание 15 ОГЭ по математике. Найти сторону треугольника. Теорема синусов.Скачать

    Задание 15 ОГЭ по математике. Найти сторону треугольника. Теорема синусов.

    Стороны треугольника через синус косинус и тангенсСкачать

    Стороны треугольника через синус косинус и тангенс

    Синус, косинус и тангенс Решение задач по геометрииСкачать

    Синус, косинус и тангенс Решение задач по геометрии

    9 класс, 14 урок, Теорема косинусовСкачать

    9 класс, 14 урок, Теорема косинусов
    Поделиться или сохранить к себе: