Найти сторону описанного треугольника

Все формулы для треугольника
Содержание
  1. 1. Как найти неизвестную сторону треугольника
  2. 2. Как узнать сторону прямоугольного треугольника
  3. 3. Формулы сторон равнобедренного треугольника
  4. 4. Найти длину высоты треугольника
  5. Как найти сторону треугольника описанного окружностью
  6. Треугольник. Формулы и свойства треугольников.
  7. Типы треугольников
  8. По величине углов
  9. По числу равных сторон
  10. Вершины углы и стороны треугольника
  11. Свойства углов и сторон треугольника
  12. Теорема синусов
  13. Теорема косинусов
  14. Теорема о проекциях
  15. Формулы для вычисления длин сторон треугольника
  16. Медианы треугольника
  17. Свойства медиан треугольника:
  18. Формулы медиан треугольника
  19. Биссектрисы треугольника
  20. Свойства биссектрис треугольника:
  21. Формулы биссектрис треугольника
  22. Высоты треугольника
  23. Свойства высот треугольника
  24. Формулы высот треугольника
  25. Окружность вписанная в треугольник
  26. Свойства окружности вписанной в треугольник
  27. Формулы радиуса окружности вписанной в треугольник
  28. Окружность описанная вокруг треугольника
  29. Свойства окружности описанной вокруг треугольника
  30. Формулы радиуса окружности описанной вокруг треугольника
  31. Связь между вписанной и описанной окружностями треугольника
  32. Средняя линия треугольника
  33. Свойства средней линии треугольника
  34. Периметр треугольника
  35. Формулы площади треугольника
  36. Формула Герона
  37. Равенство треугольников
  38. Признаки равенства треугольников
  39. Первый признак равенства треугольников — по двум сторонам и углу между ними
  40. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  41. Третий признак равенства треугольников — по трем сторонам
  42. Подобие треугольников
  43. Признаки подобия треугольников
  44. Первый признак подобия треугольников
  45. Второй признак подобия треугольников
  46. Третий признак подобия треугольников
  47. Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.
  48. Все формулы для треугольника
  49. 1. Как найти неизвестную сторону треугольника
  50. 2. Как узнать сторону прямоугольного треугольника
  51. 3. Формулы сторон равнобедренного треугольника
  52. 4. Найти длину высоты треугольника
  53. Треугольник. Формулы и свойства треугольников.
  54. Типы треугольников
  55. По величине углов
  56. По числу равных сторон
  57. Вершины углы и стороны треугольника
  58. Свойства углов и сторон треугольника
  59. Теорема синусов
  60. Теорема косинусов
  61. Теорема о проекциях
  62. Формулы для вычисления длин сторон треугольника
  63. Медианы треугольника
  64. Свойства медиан треугольника:
  65. Формулы медиан треугольника
  66. Биссектрисы треугольника
  67. Свойства биссектрис треугольника:
  68. Формулы биссектрис треугольника
  69. Высоты треугольника
  70. Свойства высот треугольника
  71. Формулы высот треугольника
  72. Окружность вписанная в треугольник
  73. Свойства окружности вписанной в треугольник
  74. Формулы радиуса окружности вписанной в треугольник
  75. Окружность описанная вокруг треугольника
  76. Свойства окружности описанной вокруг треугольника
  77. Формулы радиуса окружности описанной вокруг треугольника
  78. Связь между вписанной и описанной окружностями треугольника
  79. Средняя линия треугольника
  80. Свойства средней линии треугольника
  81. Периметр треугольника
  82. Формулы площади треугольника
  83. Формула Герона
  84. Равенство треугольников
  85. Признаки равенства треугольников
  86. Первый признак равенства треугольников — по двум сторонам и углу между ними
  87. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  88. Третий признак равенства треугольников — по трем сторонам
  89. Подобие треугольников
  90. Признаки подобия треугольников
  91. Первый признак подобия треугольников
  92. Второй признак подобия треугольников
  93. Третий признак подобия треугольников

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Найти сторону описанного треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Найти сторону описанного треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Найти сторону описанного треугольника

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Найти сторону описанного треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Найти сторону описанного треугольника

Формулы для катета, ( b ):

Найти сторону описанного треугольника

Формулы для гипотенузы, ( c ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Найти сторону описанного треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Формулы длины равных сторон , (a):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Найти сторону описанного треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через сторону и угол, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через сторону и площадь, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через стороны и радиус, ( H ):

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Как найти сторону треугольника описанного окружностью

Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

Треугольник. Формулы и свойства треугольников.

Видео:Геометрия Радиус окружности, описанной около треугольника MKP равен 5 см SinM = 0,7 Найдите сторонуСкачать

Геометрия Радиус окружности, описанной около треугольника MKP равен 5 см SinM = 0,7 Найдите сторону

Типы треугольников

По величине углов

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

По числу равных сторон

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Найти сторону описанного треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Медианы треугольника

Найти сторону описанного треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Биссектрисы треугольника

Найти сторону описанного треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3Скачать

2047 радиус окружности описанной около правильного треугольника равна 36 корней из 3

Высоты треугольника

Найти сторону описанного треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:ОГЭ 2020 задание 17Скачать

ОГЭ 2020 задание 17

Окружность вписанная в треугольник

Найти сторону описанного треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Окружность описанная вокруг треугольника

Найти сторону описанного треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Задание 24 ОГЭ по математике #7Скачать

Задание 24 ОГЭ по математике #7

Связь между вписанной и описанной окружностями треугольника

Видео:Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Средняя линия треугольника

Свойства средней линии треугольника

Найти сторону описанного треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Три способа нахождения радиуса описанной окружности вокруг треугольникаСкачать

Три способа нахождения радиуса описанной окружности вокруг треугольника

Периметр треугольника

Найти сторону описанного треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Формулы площади треугольника

Найти сторону описанного треугольника

Формула Герона

S =a · b · с
4R

Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

Подобие треугольников

Найти сторону описанного треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольника

Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.

По двум сторонам a и b треугольника ABC и радиусу R описанного круга вычислить третью сторону x треугольника.

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Применяя к этому четырехугольнику теорему Птоломея будем иметь:

Найти сторону описанного треугольника

откуда легко найдем x .

Задача будет иметь другое решение, если предположим, что стороны a и b лежат по одну сторону от центра. Применяя к этому случаю теорему Птоломея, мы получим следующее уравнение:

Найти сторону описанного треугольника

Теорема.

Произведение двух сторон треугольника равно:

1. произведению диаметра описанного круга на высоту, проведенную к третьей стороне.

2. квадрату биссектрисы угла, заключенного между этими сторонами, сложенному с произведением отрезков третьей стороны.

1.Обозначим стороны треугольника ABC через a, b и с, высоту, опущенную на сторону a через ha , а радиус описанного круга через R.Проведем диаметр AD и соединим D с B.

Треугольники ABD и AEC подобны, потому что углы B и E прямые и D= С , как углы вписанные, опирающиеся на одну и ту же дугу.

Из этой формулы легко определить величину радиуса R описанного круга.

Найти сторону описанного треугольника

По первой теореме мы имеем: bс = 2Rha , где b и с есть две стороны треугольника, haвысота, опущенная на третью сторону треугольника, и Rрадиус описанного круга.

Из этого равенства выводим:

Исключим из этой формулы высоту ha: для этого умножим числитель и знаменатель дроби на a. Тогда, заменив произведение ha a удвоенной площадью треугольника (которую обозначим S), получим:

Найти сторону описанного треугольника,

Чтобы найти радиус r внутреннего вписанного круга рассмотрим треугольник АВС со вписанной в него окружностью. Отметим центр вписанной окружности и примем во внимание, что прямые OA, OB и разделяют данный треугольник на три других треугольника, у которых основаниями служат стороны данного треугольника, а высотой — радиус r.

Найти сторону описанного треугольника

Поэтому: S=1/2ar + 1/2br + 1/2cr = r ½ (a+b+c) = rp.

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Найти сторону описанного треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Найти сторону описанного треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Найти сторону описанного треугольника

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Найти сторону описанного треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Найти сторону описанного треугольника

Формулы для катета, ( b ):

Найти сторону описанного треугольника

Формулы для гипотенузы, ( c ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Найти сторону описанного треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Формулы длины равных сторон , (a):

Найти сторону описанного треугольника

Найти сторону описанного треугольника

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Найти сторону описанного треугольникаH — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через сторону и угол, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через сторону и площадь, ( H ):

Найти сторону описанного треугольника

Формула длины высоты через стороны и радиус, ( H ):

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

По числу равных сторон

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Найти сторону описанного треугольника

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Найти сторону описанного треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Найти сторону описанного треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Найти сторону описанного треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Найти сторону описанного треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Найти сторону описанного треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Найти сторону описанного треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Найти сторону описанного треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Найти сторону описанного треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Найти сторону описанного треугольника

Формула Герона

S =a · b · с
4R

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Найти сторону описанного треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: