Формулы для расчета координат положения центра тяжести треугольника, дуги окружности и кругового сегмента.
- Центр тяжести треугольника
- Центр тяжести дуги окружности
- Центр тяжести кругового сектора
- Способы определения координат центров тяжести тел
- Статические моменты и координаты центра тяжести
- Вычисление статических моментов и координат центра тяжести кривой
- Вычисление статических моментов и координат центров тяжести плоских фигур
- 🎦 Видео
Видео:Определение центра тяжести сложной фигуры. СопроматСкачать
Центр тяжести треугольника
Центр тяжести площади треугольника совпадает с точкой пересечения его медиан (рисунок 1.10, а).
Видео:Видеоурок 3. Определение центра тяжести.Скачать
Центр тяжести дуги окружности
Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е. yC = 0.
dl – элемент дуги, dl = Rdφ, R – радиус окружности, x = Rcosφ, L = 2αR,
Видео:Найдите центр тяжестиСкачать
Центр тяжести кругового сектора
Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox, на которой находится центр тяжести (рисунок 1.10, в).
Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R.
Центр тяжести сектора совпадает с центром тяжести дуги AB:
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Найти центр и радиус окружностиСкачать
Способы определения координат центров тяжести тел
Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия. Если однородное твердое тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит, соответственно, в данной плоскости, оси или центре.
2. Разбиение. Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).
Пример. Определить координаты центра тяжести пластины, изображенной на рис. 6.3.
Решение: Для нахождения центра тяжести пластины разбиваем ее на три прямоугольника и отмечает центры тяжести каждого из них: C1, C2 и C3. Затем определяем координаты центров тяжести каждого прямоугольника и их площади:
Тогда координаты центра тяжести пластины, согласно формулам из раздела 6.2, будут равны:
см; см.
Ответ: см; см.
3. Дополнение. Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.
Пример. Определить центр тяжести круглой пластины, имеющей вырез радиусом r = 0,6 R (рис. 6.4).
Решение: Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины O1. Площадь пластины без выреза S1= πR 2 , , площадь выреза S2 = πr 2 = π0,36R 2 . Площадь пластины с вырезом S2 = =πR 2 (1 — 0,36)= 0,64πR 2 ; .
Пластина с вырезом имеет ось симметрию О1x, следовательно, yc=0.
.
4. Интегрирование. Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:
; ; .
Аналогично, формулы для определения координат центра тяжести площади:
; .
Формулы для определения положения центра тяжести линии имеют вид:
; ; .
Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.
Пример. Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).
Решение: Дуга окружности симметрична оси Ох, следовательно, центр тяжести дуги лежит на оси Ох, yс = 0. Выделим на дуге AB элемент длиной , положение которого определяется углом j. Координата x этого элемента будет равна .
Тогда, согласно формуле определения центра тяжести линии, получим:
,
где – длина дуги AB.
6. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).
; ; .
Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.
Видео:Определение координат центра тяжести сложной фигуры (плоского сечения)Скачать
Статические моменты и координаты центра тяжести
Видео:координаты центра тяжести треугольникаСкачать
Вычисление статических моментов и координат центра тяжести кривой
а) Пусть материальная точка массы отстоит от оси на расстоянии . Статическим моментом этой точки относительно оси называют число . Статическим моментом системы материальных точек , расположенных по одну сторону от оси , массы которых равны , а расстояния от оси равны называют число
Если же эти точки расположены по разные стороны от оси, то для точек, находящихся по одну сторону оси, расстояния берутся положительными, а для точек по другую сторону от оси — отрицательными.
Поэтому если точки расположены на координатной плоскости,
где — статический момент относительно оси и — относительно оси .
б) Рассмотрим теперь случай, когда масса равномерно распределена по некоторой кривой или по некоторой области . Будем считать, что плотность распределения равна единице. Тогда масса дуги численно равна ее длине, а масса области — ее площади.
Начнем со случая кривой линии , задаваемой уравнением , причем предположим, что функция непрерывна и неотрицательна.
Как обычно, разобьем отрезок на части точками и обозначим через и наименьшее и наибольшее значения функции на отрезке , Этому разбиению соответствует разбиение дуги на части (рис. 60). Из физических соображений ясно, что статический момент части относительно оси абсцисс заключен между и , где —длина этой части, (напомним, что мы положили линейную плотность дуги равной единице). Таким образом,
Так как на отрезке выполняется неравенство
то в тех же границах, что и , заключен интеграл . Значит,
Этот интеграл обозначают также следующим образом: или .
Физики обычно заменяют проведенное рассуждение более коротким. Они берут «бесконечно малый участок дуги» . Его статический момент равен . А статический момент всей дуги равен сумме элементарных статических моментов, т. е. . Преимуществом этого вывода является его наглядность. Однако в нем не определено, что такое «бесконечно малый участок дуги», или как еще говорят, «элемент дуги». При уточнении этого понятия мы вновь приходим к более длинному выводу, изложенному ранее. В дальнейшем для краткости изложения мы будем использовать принятый в физике метод рассуждений. С его помощью сразу выводим, что
Как формула (1), так и формула (2) верны и в случае, когда кривая пересекает оси координат.
в) Введем понятие центра тяжести.
Определение. Центром тяжести тела называется такая точка , что если в ней сосредоточить всю его массу, то статический момент этой точки относительно любой оси будет равен статическому моменту всего тела относительно той же оси.
Обозначим через и расстояния центра тяжести кривой от осей ординат и абсцисс.
Тогда, пользуясь определением центра тяжести кривой, получим:
Разрешая полученные равенства относительно и , найдем координаты центра тяжести плоской кривой
Замечание. Если кривая расположена симметрично относительно некоторой прямой, то центр тяжести такой кривой находится на этой прямой.
Это замечание позволяет в некоторых случаях упростить нахождение координат центра тяжести плоской кривой.
Пример 1. Найти статический момент полуокружности относительно диаметра.
Решение. Выберем систему координат так, чтобы центр окружности совпал с началом координат, а диаметр, относительно которого мы ищем статический момент, совпал с осью . Тогда статический момент полуокружности относительно диаметра выразится формулой
В выбранной системе координат уравнение полуокружности запишется так: . Тогда
Пример 2. Найдем центр тяжести четверти окружности , расположенной в первом квадранте.
Решение. Данная кривая расположена симметрично относительна биссектрисы первого координатного угла, следовательно, центр тяжести этой кривой лежит на биссектрисе, а потому . Достаточно найти только .
Вычисление проще провести, перейдя к параметрическим уравнениям окружности. Так как ее радиус равен двум, то для четверти окружности имеем:
Отсюда находим, что и
Поскольку длина четверти данной окружности равна , то
Видео:Координаты центра тяжести пластиныСкачать
Вычисление статических моментов и координат центров тяжести плоских фигур
Найдем статический момент прямоугольника со сторонами и относительно стороны . Разобьем этот прямоугольник на элементарные прямоугольники, имеющие стороны и (рис. 61). Масса элементарного прямоугольника равна его площади (напомним, что по предположению плотность распределения массы равна единице). Поэтому элементарный статический момент равен , а статический момент всего прямоугольника равен
Теперь уже легко найти статический момент криволинейной трапеции, ограниченной сверху кривой , где — непрерывная и неотрицательная функция на отрезке , снизу осью абсцисс, а с боков прямыми .
Разобьем криволинейную трапецию на элементарные прямоугольники, основание каждого из которых равно и высота . Статический момент такого прямоугольника относительно оси абсцисс по формуле (1) равен , а потому статический момент всей криволинейной трапеции равен . В случае, когда не выполняется предположение о неотрицательности функции , эту формулу надо заменить такой:
(части фигуры, расположенные ниже оси абсцисс, дают отрицательный вклад в ).
Поскольку по предположению плотность равна единице, то масса криволинейной трапеции равна ее площади, т. е. интегралу , а потому ордината центра тяжести этой трапеции выражается формулой
Нетрудно найти и статический момент криволинейной трапеции относительно оси ординат. Для этого достаточно заметить, что расстояние элементарного прямоугольника от этой оси равно . Поэтому его статический момент равен , а статический момент всей трапеции выражается формулой
Пример 3. Найти статический момент (относительно оси ) фигуры, ограниченной осью абсцисс и одной аркой циклоиды:
Решение. Так как параметр одной арки циклоиды изменяется от до , то
Пример 4. Найти центр тяжести фигуры, ограниченной осью и одной полуволной синусоиды .
Решение. Так как фигура под полуволной синусоиды расположена симметрично относительно прямой , то центр тяжести лежит на этой прямой и, следовательно, . Ордината центра тяжести находится по формуле .
Итак, центр тяжести данной фигуры находится в точке .
Пример 5. Найти центр тяжести фигуры, ограниченной осью абсцисс и одной аркой циклоиды .
Решение. Данная фигура расположена симметрично относительно прямой , следовательно, центр тяжести ее находится на этой прямой, и потому . Найдем по формуле .
Площадь данной фигуры была вычислена раньше, она равна . Следовательно,
Центр тяжести данной фигуры находится в точке .
🎦 Видео
Определение центра тяжести сложных сечений. Фигуры из ГОСТ.Скачать
Центр тяжести дугиСкачать
Координаты центра тяжести. ЗадачаСкачать
Как найти центр тяжести любой фигуры?Скачать
Определение центра тяжести плоской фигуры. Подробное объяснение. Сопромат для чайниковСкачать
Урок 79. Центр масс тела и методы определения его положенияСкачать
Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать
Определение центра тяжестиСкачать
Практическая №5 Определение центра тяжести сложной фигурыСкачать
Вычислить массу и координаты центра тяжестиСкачать
Найти центр кругаСкачать
Практическая работа по теме: Центр тяжестиСкачать
Найдем площадь и центр тяжести через двойной интегралСкачать