Найдите угол авс равнобедренного треугольника вписанного в окружность

Найдите угол авс равнобедренного треугольника вписанного в окружность

На окружности отмечены точки A и B так, что меньшая дуга AB равна 72°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 72°. Треугольник AOB — равнобедренный. Значит,

Найдите угол авс равнобедренного треугольника вписанного в окружность

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 54° = 36°.

Читатели, знакомые с теоремой «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», могут решить эту задачу в одно действие: ∠ABC = 72° : 2 = 36°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 56°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 56°. Треугольник AOB — равнобедренный. Значит,

Найдите угол авс равнобедренного треугольника вписанного в окружность

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 62° = 28°.

Читатель, знающий правило «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», может решить эту задачу в одно действие:

Найдите угол авс равнобедренного треугольника вписанного в окружность

Найдите угол ABC. Ответ дайте в градусах.

Впишем в окружность квадрат так, как показано на рисунке. Стороны квадрата отсекают на окружности равные дуги. Поэтому градусная мера дуги AC, на которую опирается угол ABC, составляет Найдите угол авс равнобедренного треугольника вписанного в окружностьполного угла 360°, т. е. равна 270°. Угол ABC вписанный, поэтому он равен половине дуги, на которую опирается. Следовательно, угол ABC равен 135°.

Видео:2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

Найдите угол авс равнобедренного треугольника вписанного в окружность

В окружность с центром в точке O вписан равнобедренный треугольник ABC с основанием AC. Дуга ACB равна [math]260^circ[/math]. Найдите угол ABC

Найдите угол авс равнобедренного треугольника вписанного в окружность

Углы при основании в равнобедренном треугольнике равны между собой, значит и дуги, на которые опираются эти углы, равны между собой.

Вписанный угол АВС опирающийся на дугу АС равен половине градусной меры дуги.

∠АВС=дугаАС/2=80° Ответ: 80
2 1 8 0 8 4 7

Видео:№703. В окружность вписан равнобедренный треугольник ABC с основанием ВС. Найдите углы треугольникаСкачать

№703. В окружность вписан равнобедренный треугольник ABC с основанием ВС. Найдите углы треугольника

Треугольник вписанный в окружность

Найдите угол авс равнобедренного треугольника вписанного в окружность

Видео:Треугольник ABC вписан в окружность с центром O Угол BAC равен 32°Скачать

Треугольник ABC вписан в окружность с центром O  Угол BAC равен 32°

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Найдите угол авс равнобедренного треугольника вписанного в окружность

Видео:Окружность описана около равнобедренного треугольника. Найти центральный уголСкачать

Окружность описана около равнобедренного треугольника.  Найти центральный угол

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°Скачать

№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Найдите угол авс равнобедренного треугольника вписанного в окружность

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

🔥 Видео

Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭ

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углыСкачать

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углы

№227. Найдите углы равнобедренного треугольника, если: а) угол при основании в два разаСкачать

№227. Найдите углы равнобедренного треугольника, если: а) угол при основании в два раза

Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Геометрия Вершины равнобедренного треугольника ABC (AB = BC) делят описанную около него окружностьСкачать

Геометрия Вершины равнобедренного треугольника ABC (AB = BC) делят описанную около него окружность

2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABCСкачать

2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABC

Найти угол треугольника, вписанного во вписанную окружностьСкачать

Найти угол треугольника, вписанного во вписанную окружность

Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Угол А четырёхугольника ABCD, вписанного в окружность, равен 25.Найдите уголСкачать

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Угол А четырёхугольника ABCD, вписанного в окружность, равен 25.Найдите угол

Радиус описанной окружностиСкачать

Радиус описанной окружности

№224. Найдите углы треугольника ABC, если ∠A:∠B:∠C= 2:3:4.Скачать

№224. Найдите углы треугольника ABC, если ∠A:∠B:∠C= 2:3:4.

№223. Найдите угол С треугольника ABC, если: a) ∠A=65°, ∠B = 57°; б) ∠A = 24°, ∠B= 130Скачать

№223. Найдите угол С треугольника ABC, если: a) ∠A=65°, ∠B = 57°; б) ∠A = 24°, ∠B= 130

угол a четырёхугольника abcd вписанного в окружность равен 46Скачать

угол a четырёхугольника abcd вписанного в окружность равен 46
Поделиться или сохранить к себе: