Найдите площадь вписанной окружности в квадрат с площадью 100

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Найдите площадь вписанной окружности в квадрат с площадью 100

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:16 задание ОГЭ 2023 Окружность Квадрат#ShortsСкачать

16 задание  ОГЭ 2023 Окружность  Квадрат#Shorts

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Площадь круга. Математика 6 класс.Скачать

Площадь круга. Математика 6 класс.

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Найдите площадь вписанной окружности в квадрат с площадью 100

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Найдите площадь вписанной окружности в квадрат с площадью 100
Найдите площадь вписанной окружности в квадрат с площадью 100.(1)

Из равенства (1) найдем d:

Найдите площадь вписанной окружности в квадрат с площадью 100.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Площадь квадрата. Как найти площадь квадрата?Скачать

Площадь квадрата. Как найти площадь квадрата?

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Найдите площадь вписанной окружности в квадрат с площадью 100(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:ПЛОЩАДЬ КРУГА. ЛАЙФХАК #math #логика #загадка #математика #геометрияСкачать

ПЛОЩАДЬ КРУГА. ЛАЙФХАК   #math #логика #загадка #математика #геометрия

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Найдите площадь вписанной окружности в квадрат с площадью 100(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Задание 3 ЕГЭ по математике. Урок 11Скачать

Задание 3 ЕГЭ по математике. Урок 11

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Найти площадь квадрата описанного около окружности радиуса 19Скачать

Найти площадь квадрата описанного около окружности радиуса 19

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Найдите площадь вписанной окружности в квадрат с площадью 100
Найдите площадь вписанной окружности в квадрат с площадью 100(5)

Из формулы (5) найдем R:

Найдите площадь вписанной окружности в квадрат с площадью 100
Найдите площадь вписанной окружности в квадрат с площадью 100(6)

или, умножая числитель и знаменатель на Найдите площадь вписанной окружности в квадрат с площадью 100, получим:

Найдите площадь вписанной окружности в квадрат с площадью 100.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Найдите площадь вписанной окружности в квадрат с площадью 100
Найдите площадь вписанной окружности в квадрат с площадью 100.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Найдите площадь вписанной окружности в квадрат с площадью 100Найти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Найдите площадь вписанной окружности в квадрат с площадью 100в (8), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать

Задача 6 №27917 ЕГЭ по математике. Урок 134

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Найдите площадь вписанной окружности в квадрат с площадью 100(9)

где Найдите площадь вписанной окружности в квадрат с площадью 100− сторона квадрата.

Пример 6. Сторона квадрата равен Найдите площадь вписанной окружности в квадрат с площадью 100. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Найдите площадь вписанной окружности в квадрат с площадью 100в (9), получим:

Найдите площадь вписанной окружности в квадрат с площадью 100

Ответ: Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Найти площадь квадрата вписанного в четверть окружности.Скачать

Найти площадь квадрата вписанного в четверть окружности.

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Найдите площадь вписанной окружности в квадрат с площадью 100

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Найдите площадь вписанной окружности в квадрат с площадью 100

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Найдите площадь вписанной окружности в квадрат с площадью 100(10)

Так как AD и BC перпендикулярны, то

Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Найдите площадь вписанной окружности в квадрат с площадью 100(12)

Эти реугольники также равнобедренные. Тогда

Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100(13)

Из (13) следует, что

Найдите площадь вписанной окружности в квадрат с площадью 100(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать

Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.

Квадрат вписанный в окружность

Видео:Лучший способ найти площадь кругаСкачать

Лучший способ найти площадь круга

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.
Найдите площадь вписанной окружности в квадрат с площадью 100

Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

Радиус вписанной окружности в квадрат, если известен периметр:

Радиус вписанной окружности в квадрат, если известна площадь:

Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

Радиус вписанной окружности в квадрат, если известна диагональ:

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

Радиус описанной окружности около квадрата, если известен периметр:

Радиус описанной окружности около квадрата, если известнаплощадь:

Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

Радиус описанной окружности около квадрата, если известнадиагональ:

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известнаплощадь:

Сторона квадрата вписанного в окружность, если известнадиагональ:

Сторона квадрата вписанного в окружность, если известен периметр:

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

Площадь квадрата вписанного в окружность, если известен периметр:

Площадь квадрата вписанного в окружность, если известна диагональ:

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

Периметр квадрата вписанного в окружность, если известна площадь:

Периметр квадрата вписанного в окружность, если известенрадиус вписанной окружности:

Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

Периметр квадрата вписанного в окружность, если известна диагональ:

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

Диагональ квадрата вписанного в окружность, если известна площадь:

Диагональ квадрата вписанного в окружность, если известен периметр:

Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Онлайн калькулятор длины стороны вписанного в круг квадрата. Как узнать длину стороны вписанного в круг квадрата.

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100

Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100Найдите площадь вписанной окружности в квадрат с площадью 100

Вычислить длину стороны вписанного квадрата через:Радиус круга R:

Для того что бы найти длину стороны вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.

Найдите площадь вписанной окружности в квадрат с площадью 100

Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:

  1. либо площадь круга, обозначаемая буквой S,
  2. либо периметр круга, обозначаемый буквой P,
  3. либо радиус круга, обозначаемый буквой R,
  4. либо диаметр круга, обозначаемый буквой D.

Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой

Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга

1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,

мы можем узнать длину сторон квадрата используя теорему Пифагора

🔥 Видео

Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Найдите площадь закрашенной фигуры ★ 2 способа решения ★ Задание 3 ЕГЭ профильСкачать

Найдите площадь закрашенной фигуры ★ 2 способа решения ★ Задание 3 ЕГЭ профиль

Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts

Как найти площадь закрашенной фигуры? Несложная геометрическая задачаСкачать

Как найти площадь закрашенной фигуры? Несложная геометрическая задача
Поделиться или сохранить к себе: