Найдите образ окружности z 1 при отображении

VMath
Содержание
  1. Инструменты сайта
  2. Основное
  3. Навигация
  4. Информация
  5. Действия
  6. Содержание
  7. Глава 3. Конформные отображения
  8. Геометрический смысл аргумента и модуля производной функции комплексного переменного
  9. Радикал
  10. Логарифмическая функция
  11. Тригонометрические функции
  12. Теорема Римана. Основные принципы конформных отображений
  13. Конформные отображения. Дробно-линейная функция
  14. Конформные отображения. Дробно-линейная функция
  15. Найти образ окружности при отображении
  16. VMath
  17. Инструменты сайта
  18. Основное
  19. Навигация
  20. Информация
  21. Действия
  22. Содержание
  23. Глава 3. Конформные отображения
  24. Геометрический смысл аргумента и модуля производной функции комплексного переменного
  25. Радикал
  26. Логарифмическая функция
  27. Тригонометрические функции
  28. Теорема Римана. Основные принципы конформных отображений
  29. Конформные отображения. Дробно-линейная функция
  30. Конформные отображения. Дробно-линейная функция
  31. Пример с решением:
  32. Пример с решением:
  33. 🎦 Видео

Инструменты сайта

Основное

Информация

Действия

Содержание

Видео:Конформные отображенияСкачать

Конформные отображения

Глава 3. Конформные отображения

Видео:Отображения множествСкачать

Отображения множеств

Геометрический смысл аргумента и модуля производной функции комплексного переменного

Пусть дана аналитическая в области $D$ функция $f(z)$. Возьмем точку $z_0in D$, пусть производная функции в этой точке не равна нулю $$f'(z_0)ne0.$$

Функция $w=f(z)$ отображает область $D$ на плоскости z на множество $E$ в плоскости $w$.

Точке $z_0in D$ соответствует точка $w_0=f(z_0)in E$.

Аргумент $arg f'(z_0)$ есть угол поворота касательной к любой кривой, проведенной через точку $z_0$ при ее отображении с помощью функции $w=f(z)$ на плоскость $w$.

Модуль $|f'(z_0)|$ можно рассматривать как величину масштаба в точке $z_0$ при отображении $w$. Если $|f'(z_0 )|>1$, то происходит растяжение бесконечно малого элемента, выходящего из точки $z_0$. Если $|f'(z_0 )| 0rightarrow |w| 0) rightarrow w_0=0. $$

Функция $w=z^n$ отображает расширенную комплексную плоскость $z$ на расширенную комплексную плоскость $w$.

Не является конформным при $z=0$, так как $$w’=n,z^ =0 ,, mbox z=0.$$

Не является однолистной, так как всякая точка $w$, отличная от $w=0$ и $w=infty$, имеет $n$ различных прообразов. Для однолистности отображения следует брать на плоскости $z$ лишь сектор вида $$kcdotdisplaystylefracleqslant mbox,zleqslant(k+1)cdotdisplaystylefrac,,, kin mathbb Z_.$$

Исследуем поведение функции около точки $z=0$. При помощи степенной функции $$ w=z^n $$ угол с вершиной в начале координат плоскости $z$ отображается в угол с вершиной в начале координат плоскости $w$ c раствором в $n$ раз большим: $$ z=rho e^,, rightarrow ,, w = z^n=rho^n e^. $$ Отображение будет взаимно однозначным, если раствор угла на плоскости $w$ будет не более $2pi$.

Найти в какую область преобразуется квадрат $$ 0le xle 1,quad 0le yle 1 $$ функцией $w=z^2+z-1$.

Решение. Выделим вещественную и мнимую части: $$ begin u=x^2-y^2+x-1, v=2xy+y. end $$

Определим образы участков границ данного квадрата: begin OA:quadleft<begin y=0, 0le xle1 endright.quadhboxquad left<begin u=x^2+x-1, v=0. endright. end это отрезок вещественной оси $-1le ule 1$. begin AB:quadleft<begin x=1, 0le yle1 endright.quadhboxquad left<begin u=1-dfrac9, 0le vle3 endright.hskip17.5pt end это часть параболы в первом квадранте.

Образы отрезков $BC$ и $CO$ также являются дугами парабол: beginlabel BC:quad u=frac14big(v^2-9big),quad 1le vle 3, end beginlabel CO:quad u=-1-v^2,quad 0le vle1. end Так как точка $z=displaystylefrac12(1+i)$ переходит в точку $w=i-displaystylefrac12$, то внутренность квадрата переходит во внутренность криволинейного четырехугольника.

Ответ: Внутренность квадрата переходит во внутренность криволинейного четырехугольника.

Найдите образ окружности z 1 при отображении

Видео:Конформные отображения с помощью линейной функцииСкачать

Конформные отображения с помощью линейной функции

Радикал

Рассмотрим функцию begin w=sqrt[n], end обратную степенной функции $z=w^n$.

Примем, что $$w=infty mbox z=infty.$$

Во всех точках расширенной плоскости $z$, кроме точек $z=0$ и $z=infty$ (где эта функция соответственно равна $w=0$ и $w=infty)$, эта функция $n$-значна и все ее $n$ различных значений для каждого фиксированного $z=re^$ (не равные 0 и $infty$) дает формула: $$ w=sqrt[n]cdot e^ <itfrac> =sqrt[n]cdot e^ <itfrac>cdot e^<itfrac>quadhbox quad k=0,1,dots,n-1. $$

Через $w_k$ обозначим множество всех точек $w$, соответствующих данному фиксированному значению $k$. В результате получим $n$ функций $w_k$, $k=0,2,dots,n-1$, называемых ветвями многозначной функции $w=sqrt[n]$. $$ w_k= sqrt[n]cdot e^ <itfrac>cdot e^<itfrac>quadhbox quad k=0,1,dots,n-1. $$

Рассмотрим какую-нибудь ветвь $w_k$ функции и заставим точку $z$ описать в плоскости какую-нибудь замкнутую кривую.

Найдите образ окружности z 1 при отображении

Если эта кривая не содержит внутри себя точку $z=0$ (сплошная кривая на рисунке), то непрерывно изменяющийся аргумент точки $z$ вернется к прежнему значению с возвращением точки $z$ в исходное положение. В силу этого и ветвь $w_k$ радикала останется прежней (т.е. мы вернемся к прежнему значению корня в исходной точке).

Картина изменится, если кривая $l$ будет содержать внутри себя точку $z=0$ (пунктирная кривая на рисунке). В этом случае после полного обхода кривой $l$ аргумент точки $z$ в исходном положении увеличится на $pm 2pi k$ (в зависимости от того, совершается ли обход кривой против или по часовой стрелки), в силу чего мы от значения $w_k$ корня в исходной точке перейдем либо к значению $$ w_kcdot e^<itfrac>=w_,$$ либо к значению $$ w_kcdot e^<-itfrac>=w_. $$

Повторяя обход вокруг начала координат в том или ином направлении достаточное количество раз, мы можем перейти от исходной ветви $w_k$ радикала к любой другой ветви. Очевидно, что после $n$ обходов начала координат в одном направлении мы возвращаемся к исходной ветви радикала.

Точка, обладающая тем свойством, что обход вокруг нее переводит от одной ветви многозначной функции к другой ветви, называется точкой разветвления этой функции. Таким образом, точка $z=0$ будет точкой разветвления функции $w=sqrt[n]$.

Из сказанного следует, что мы можем выделить $n$ однозначных ветвей $w_k$ функции $w=sqrt[n]$ только в такой области $D$, которая не содержит ни одной замкнутой кривой, заключающей внутри себя точку $z=0$.

Найдите образ окружности z 1 при отображении

Расширенная плоскость $z$ с любым разрезом от точки $z=0$ до точки $z=infty$ и, в частности, с разрезом вдоль положительной части вещественной оси (левая часть рисунка) не содержит ни одной замкнутой кривой, обходящей точку $z=0$. На ней можно выделить $n$ однозначных ветвей $w_k$, $k=0,1,dots,n-1$, радикала, принимающих каждая одно из значений $sqrt[n]$.

Эти ветви будут однолистно отображать расширенную плоскость $z$ с разрезом вдоль положительной части вещественной оси на секторы $$ kfracn 0$.

Видео:Конформные отображения с помощью степенной функцииСкачать

Конформные отображения с помощью степенной функции

Логарифмическая функция

Логарифмическая функция обратна показательной, бесконечнозначна, все ее значения вычисляются по формуле $$ w=mboxz=mbox|z|+imboxz=mbox|z|+i(mboxz+2pi k),quad k=0,pm1,pm2,dots . $$ Дополнительно примем, что $w=infty$ при $z=0$ и $z=infty$.

Обозначив через $w_k$ множество всех точек $w$, соответствующих данному фиксированному значению $k$, получим бесконечное множество функций, которые называются ветвями многозначной функции $w=mboxz$ $$ w_k= mbox|z|+imboxz=mbox|z|+i(mboxz+2pi k),quad k=0,pm1,pm2,dots . $$

Бесконечнозначность логарифма связана с бесконечнозначностью его мнимой части $mboxz$. Поэтому область не должна допускать обхода начала координат по непрерывной кривой, так как при таком обходе значение $mboxz$ изменяется на $2pi$. Область указанного типа будет сектором концентрического кольца: $$ 0 0, 0 1$.

Для того чтобы лучше представить себе рассматриваемое отображение, положим $$ z=re^,quad w=u+iv $$ и произведя соответствующие замены в функции Жуковског и отделив вещественные и мнимые части, получим два вещественных равенства, зависящие от двух параметров $$ u=frac12left(r+frac1rright)cosvarphi,quad v=frac12left(r-frac1rright)sinvarphi. $$

Рассмотрим две упомянутые выше области $|z| 1$.

В области $|z| 0$ функция Жуковского отобразит на нижнюю полуплоскость $mathfrak w 0$.

Рассмотрим теперь в области $|z|>1$ окружности $|z|=r$, где $1 1$ на всю плоскость $w$ с разрезом вдоль вещественной оси от точки $w=-1$ до точки $w=1$. При этом верхний полукруг отображается на верхнюю полуплоскость, а нижний полукруг — на нижнюю полуплоскость.

Обратная к функции Жуковского функция $$ w=z+sqrt $$ двузначна, что обусловлено двузначностью квадратного корня. Каждую точку $z$ она отображает в две точки $w_1$ и $w_2$, связанные условием $w_1w_2=1$. Легко показать, что точки $z=-1$ и $z=1$ будут точками разветвления этой функции. Таким образом, в любой области, не содержащей замкнутых кривых, обходящих лишь одну из этих точек, можно выделить две однозначные ветви обратной функции. Этому условию, в частности, удовлетворяет вся плоскость $z$ с разрезом вдоль отрезка $[-1,1]$ вещественной оси. Ветви обратной функции однолистно отображают плоскость $z$ с указанным разрезом либо на круг $|w| 1$ и аналитичны.

Видео:Комплексная область Im(1/z)=1/2. ОкружностьСкачать

Комплексная область  Im(1/z)=1/2. Окружность

Тригонометрические функции

Видео:Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости

Теорема Римана. Основные принципы конформных отображений

Теорема 1 (Римана).

Всякую односвязную область $D$ комплексной плоскости $z$, граница которой состоит более чем из одной точки, можно конформно отобразить на внутренность единичного круга $|w| tfkp/chapter3.txt · Последние изменения: 2022/01/13 22:15 — nvr

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Конформные отображения. Дробно-линейная функция

Найдите образ окружности z 1 при отображении

Найдите образ окружности z 1 при отображении

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Конформные отображения. Дробно-линейная функция

Определение 1. Функция вида

Найдите образ окружности z 1 при отображении

где a, b, c, d – комплексные числа, называется дробно-линейной.

Отображение, задаваемое этой функцией, называется дробно- линейным.

Условие ad − bc ≠ 0 означает, что w ≠ const . Функция (1) осуществляет конформное отображение расширенной комплексной плоскости Z на расширенную комплексную плоскость w, так как производная

Найдите образ окружности z 1 при отображении

Для 0 c ≠ предполагаем, что

Найдите образ окружности z 1 при отображении

для c = 0 функция (1) становится линейной, т. е. w = az + b и w(∞) = ∞. Функция

Найдите образ окружности z 1 при отображении

является обратной к функции (1). Она также является дробно-линейной и однозначной на расширенной комплексной плоскости, т. е. здесь функция (1) является однолистной.

Каждое дробно-линейное отображение может быть получено в результате последовательного выполнения трех отображений: линейного, отображения w = 1/z и снова линейного отображения.

Дробно-линейные отображения переводят:

1) окружность или прямую в окружность или прямую (круговое свойство);

2) пару точек, симметричных относительно окружности, – в пару то- чек, симметричных относительно образа этой окружности (свойство сохранения симметрии). Здесь «окружность», в частности, может быть прямой, если под последней понимать окружность бесконечного радиуса.

Существует единственное дробно-линейное отображение, которое три разных точки z1, z2, z3 переводит соответственно в три разные точки w1, w2, w3. Это отображение задается формулой

Найдите образ окружности z 1 при отображении

Если одна из точек zk или wk (k =1, 2, 3) является бесконечно удаленной точкой, то в формуле (2) разности, в которые входит zk или wk, требуется заменить единицами.

Существует бесконечно много дробно-линейных отображений, которые заданную окружность γ отображают на заданную окружность Г, причем область D, для которой γ является границей, отображается на одну из областей, для которой Г является границей.

Для обеспечения единственности дробно-линейного отображения достаточно выполнение одного из условий:

1) заданная точка z0 ∈ D отображается в заданную точку w0 ∈ D’, а любая кривая, выходящая из точки z0, поворачивается на заданный угол α w0 = f (z0), α = arg(f ‘(z0));

2) точки z0 ∈ D и z1 ∈ γ отображаются соответственно в заданные точки w0 ∈ D’ и w1 ∈ Γ.

Пример 1. Найти образ окружности, заданной уравнением

x 2 + y 2 + 2x − 4y + 1 = 0,

при отображении w = 1/z.

Решение. На основании кругового свойства дробно-линейного отображения окружность переходит в окружность. Для ее нахождения на заданной окружности x 2 + y 2 + 2x − 4y + 1 = 0, выберем три точки, например: z1 = −1 z2 = 1 + 2i, z3 = −3 + 2i, образами которых при отображении w = 1/z будут точки

Найдите образ окружности z 1 при отображении

Точками w1, w2, w3 однозначно определяется образ данной окружности, уравнение которой:

Найдите образ окружности z 1 при отображении

Для отображения w = 1/z имеем

Найдите образ окружности z 1 при отображении

Выразив отсюда x = x(u, v), y = (u, v) и подставив в уравнение заданной окружности, получим искомый образ (3).

Пример 2. Найти образ области D при отображении Найдите образ окружности z 1 при отображении, где D = <z, 0

Найдите образ окружности z 1 при отображении

Будем искать образ границы области D (рис. 1).

Сторона OA: y = 0, 0 ≤ x ≤ 1 отображается на отрицательную часть действительной оси (v = 0, − ∞

Найдите образ окружности z 1 при отображении

Рис. 1. Область D

Найдите образ окружности z 1 при отображении

Рис. 2. Образ области D

Сторона AB: x = 1, 0

Сторона BC: y =1, 1 ≥ x ≥ 0, отображается в линию, параметрическое уравнение которой имеет вид

Найдите образ окружности z 1 при отображении

Исключив параметр x, получим

Найдите образ окружности z 1 при отображении

Аналогично образ стороны CO определяется уравнением

Найдите образ окружности z 1 при отображении

В соответствии с принципом соответствия границ образом квадрата будет заштрихованная область на рис. 1.

Пример 3. Найти дробно-линейное отображение, которое точки z1 = 1 и z2 = −1 оставляет неподвижными, а точку z3 = i переводит в точку w3 = 0.

Найти образ полуплоскости Im(z) > 0 при данном отображении.

Решение. По условию имеем три пары соответствующих точек

Применяя формулу (2), получим искомое дробно-линейное отображение Найдите образ окружности z 1 при отображении.

Найдем теперь образ верхней полуплоскости, границей которой является действительная ось. Согласно круговому свойству действительная ось отображается в окружность. Чтобы найти ее, на действительной оси выберем три точки, например: z1 =1, z2 = 0, z3 = −1, образами которых бу- дут точки w1 = 1, w2 = −i, w3 = −1. Они лежат на окружности |w| =1. По принципу соответствия границ получаем, что образом верхней полуплоскости будет область D’= <w, |w|

Пример 4. Найти дробно-линейное отображение, которое круг |z − 4i| u так, что w(4i) = −4, w(2i) = 0.

Решение. Условие задачи определяет две пары соответствующих точек. Третью пару найдем, пользуясь свойством симметрии дробно линейного отображения, согласно которому точки z1 = 4i и z3 = ∞, симметричные относительно окружности |z − 4i| = 2, перейдут в точки w1 = −4 и w3 = − 4i, симметричные относительно прямой u = v . Таким образом, найдена третья пара точек z3 = ∞ и w3 = −4i. По формуле (2) найдем искомое отображение Найдите образ окружности z 1 при отображении.

Видео:Конформное отображение функции комплексной переменной (ФКП)Скачать

Конформное отображение функции комплексной переменной (ФКП)

Найти образ окружности при отображении

Видео:Конформные отображения c помощью дробно-линейной функции: круговое свойствоСкачать

Конформные отображения c помощью дробно-линейной функции: круговое свойство

VMath

Инструменты сайта

Основное

Информация

Действия

Содержание

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Глава 3. Конформные отображения

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Геометрический смысл аргумента и модуля производной функции комплексного переменного

Пусть дана аналитическая в области $D$ функция $f(z)$. Возьмем точку $z_0in D$, пусть производная функции в этой точке не равна нулю $$f'(z_0)ne0.$$

Функция $w=f(z)$ отображает область $D$ на плоскости z на множество $E$ в плоскости $w$.

Точке $z_0in D$ соответствует точка $w_0=f(z_0)in E$.

Аргумент $arg f'(z_0)$ есть угол поворота касательной к любой кривой, проведенной через точку $z_0$ при ее отображении с помощью функции $w=f(z)$ на плоскость $w$.

Модуль $|f'(z_0)|$ можно рассматривать как величину масштаба в точке $z_0$ при отображении $w$. Если $|f'(z_0 )|>1$, то происходит растяжение бесконечно малого элемента, выходящего из точки $z_0$. Если $|f'(z_0 )| 0rightarrow |w| 0) rightarrow w_0=0. $$

Функция $w=z^n$ отображает расширенную комплексную плоскость $z$ на расширенную комплексную плоскость $w$.

Не является конформным при $z=0$, так как $$w’=n,z^ =0 ,, mbox z=0.$$

Не является однолистной, так как всякая точка $w$, отличная от $w=0$ и $w=infty$, имеет $n$ различных прообразов. Для однолистности отображения следует брать на плоскости $z$ лишь сектор вида $$kcdotdisplaystylefrac leqslant mbox,zleqslant(k+1)cdotdisplaystylefrac ,,, kin mathbb Z_.$$

Исследуем поведение функции около точки $z=0$. При помощи степенной функции $$ w=z^n $$ угол с вершиной в начале координат плоскости $z$ отображается в угол с вершиной в начале координат плоскости $w$ c раствором в $n$ раз большим: $$ z=rho e^ ,, rightarrow ,, w = z^n=rho^n e^ . $$ Отображение будет взаимно однозначным, если раствор угла на плоскости $w$ будет не более $2pi$.

Найти в какую область преобразуется квадрат $$ 0le xle 1,quad 0le yle 1 $$ функцией $w=z^2+z-1$.

Решение. Выделим вещественную и мнимую части: $$ begin u=x^2-y^2+x-1, v=2xy+y. end $$

Образы отрезков $BC$ и $CO$ также являются дугами парабол: begin label BC:quad u=frac14big(v^2-9big),quad 1le vle 3, end begin label CO:quad u=-1-v^2,quad 0le vle1. end Так как точка $z=displaystylefrac12(1+i)$ переходит в точку $w=i-displaystylefrac12$, то внутренность квадрата переходит во внутренность криволинейного четырехугольника.

Ответ: Внутренность квадрата переходит во внутренность криволинейного четырехугольника.

Найдите образ окружности z 1 при отображении

Видео:Конформные отображения c помощью дробно-линейной функции: отображение по трем точкамСкачать

Конформные отображения c помощью дробно-линейной функции: отображение по трем точкам

Радикал

Рассмотрим функцию begin w=sqrt[n] , end обратную степенной функции $z=w^n$.

Примем, что $$w=infty mbox z=infty.$$

Во всех точках расширенной плоскости $z$, кроме точек $z=0$ и $z=infty$ (где эта функция соответственно равна $w=0$ и $w=infty)$, эта функция $n$-значна и все ее $n$ различных значений для каждого фиксированного $z=re^ $ (не равные 0 и $infty$) дает формула: $$ w=sqrt[n] cdot e^ > =sqrt[n] cdot e^ >cdot e^ >quadhbox quad k=0,1,dots,n-1. $$

Через $w_k$ обозначим множество всех точек $w$, соответствующих данному фиксированному значению $k$. В результате получим $n$ функций $w_k$, $k=0,2,dots,n-1$, называемых ветвями многозначной функции $w=sqrt[n] $. $$ w_k= sqrt[n] cdot e^ >cdot e^ >quadhbox quad k=0,1,dots,n-1. $$

Рассмотрим какую-нибудь ветвь $w_k$ функции и заставим точку $z$ описать в плоскости какую-нибудь замкнутую кривую.

Найдите образ окружности z 1 при отображении

Если эта кривая не содержит внутри себя точку $z=0$ (сплошная кривая на рисунке), то непрерывно изменяющийся аргумент точки $z$ вернется к прежнему значению с возвращением точки $z$ в исходное положение. В силу этого и ветвь $w_k$ радикала останется прежней (т.е. мы вернемся к прежнему значению корня в исходной точке).

Картина изменится, если кривая $l$ будет содержать внутри себя точку $z=0$ (пунктирная кривая на рисунке). В этом случае после полного обхода кривой $l$ аргумент точки $z$ в исходном положении увеличится на $pm 2pi k$ (в зависимости от того, совершается ли обход кривой против или по часовой стрелки), в силу чего мы от значения $w_k$ корня в исходной точке перейдем либо к значению $$ w_kcdot e^ >=w_ ,$$ либо к значению $$ w_kcdot e^ >=w_ . $$

Повторяя обход вокруг начала координат в том или ином направлении достаточное количество раз, мы можем перейти от исходной ветви $w_k$ радикала к любой другой ветви. Очевидно, что после $n$ обходов начала координат в одном направлении мы возвращаемся к исходной ветви радикала.

Точка, обладающая тем свойством, что обход вокруг нее переводит от одной ветви многозначной функции к другой ветви, называется точкой разветвления этой функции. Таким образом, точка $z=0$ будет точкой разветвления функции $w=sqrt[n] $.

Из сказанного следует, что мы можем выделить $n$ однозначных ветвей $w_k$ функции $w=sqrt[n] $ только в такой области $D$, которая не содержит ни одной замкнутой кривой, заключающей внутри себя точку $z=0$.

Найдите образ окружности z 1 при отображении

Расширенная плоскость $z$ с любым разрезом от точки $z=0$ до точки $z=infty$ и, в частности, с разрезом вдоль положительной части вещественной оси (левая часть рисунка) не содержит ни одной замкнутой кривой, обходящей точку $z=0$. На ней можно выделить $n$ однозначных ветвей $w_k$, $k=0,1,dots,n-1$, радикала, принимающих каждая одно из значений $sqrt[n] $.

Эти ветви будут однолистно отображать расширенную плоскость $z$ с разрезом вдоль положительной части вещественной оси на секторы $$ kfrac n 0$.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Логарифмическая функция

Логарифмическая функция обратна показательной, бесконечнозначна, все ее значения вычисляются по формуле $$ w=mbox z=mbox |z|+imboxz=mbox |z|+i(mboxz+2pi k),quad k=0,pm1,pm2,dots . $$ Дополнительно примем, что $w=infty$ при $z=0$ и $z=infty$.

Обозначив через $w_k$ множество всех точек $w$, соответствующих данному фиксированному значению $k$, получим бесконечное множество функций, которые называются ветвями многозначной функции $w=mbox z$ $$ w_k= mbox |z|+imboxz=mbox |z|+i(mboxz+2pi k),quad k=0,pm1,pm2,dots . $$

Для того чтобы лучше представить себе рассматриваемое отображение, положим $$ z=re^ ,quad w=u+iv $$ и произведя соответствующие замены в функции Жуковског и отделив вещественные и мнимые части, получим два вещественных равенства, зависящие от двух параметров $$ u=frac12left(r+frac1rright)cosvarphi,quad v=frac12left(r-frac1rright)sinvarphi. $$

Рассмотрим две упомянутые выше области $|z| 1$.

В области $|z| 0$ функция Жуковского отобразит на нижнюю полуплоскость $mathfrak w 0$.

Рассмотрим теперь в области $|z|>1$ окружности $|z|=r$, где $1 1$ на всю плоскость $w$ с разрезом вдоль вещественной оси от точки $w=-1$ до точки $w=1$. При этом верхний полукруг отображается на верхнюю полуплоскость, а нижний полукруг — на нижнюю полуплоскость.

Обратная к функции Жуковского функция $$ w=z+sqrt $$ двузначна, что обусловлено двузначностью квадратного корня. Каждую точку $z$ она отображает в две точки $w_1$ и $w_2$, связанные условием $w_1w_2=1$. Легко показать, что точки $z=-1$ и $z=1$ будут точками разветвления этой функции. Таким образом, в любой области, не содержащей замкнутых кривых, обходящих лишь одну из этих точек, можно выделить две однозначные ветви обратной функции. Этому условию, в частности, удовлетворяет вся плоскость $z$ с разрезом вдоль отрезка $[-1,1]$ вещественной оси. Ветви обратной функции однолистно отображают плоскость $z$ с указанным разрезом либо на круг $|w| 1$ и аналитичны.

Видео:Найти пример отображения на верхнюю полуплоскостьСкачать

Найти пример отображения на верхнюю полуплоскость

Тригонометрические функции

Видео:Конформные отображения с помощью показательной и логарифмической функцийСкачать

Конформные отображения с помощью показательной и логарифмической функций

Теорема Римана. Основные принципы конформных отображений

Теорема 1 (Римана).

Всякую односвязную область $D$ комплексной плоскости $z$, граница которой состоит более чем из одной точки, можно конформно отобразить на внутренность единичного круга $|w| tfkp/chapter3.txt · Последние изменения: 2022/01/13 22:15 — nvr

Видео:Построение областей по заданным условиямСкачать

Построение областей по заданным условиям

Конформные отображения. Дробно-линейная функция

Найдите образ окружности z 1 при отображении

Найдите образ окружности z 1 при отображении

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Конформные отображения. Дробно-линейная функция

Определение 1. Функция вида

Найдите образ окружности z 1 при отображении

где a, b, c, d – комплексные числа, называется дробно-линейной.

Отображение, задаваемое этой функцией, называется дробно- линейным.

Условие ad − bc ≠ 0 означает, что w ≠ const . Функция (1) осуществляет конформное отображение расширенной комплексной плоскости Z на расширенную комплексную плоскость w, так как производная

Найдите образ окружности z 1 при отображении

Для 0 c ≠ предполагаем, что

Найдите образ окружности z 1 при отображении

для c = 0 функция (1) становится линейной, т. е. w = az + b и w(∞) = ∞. Функция

Найдите образ окружности z 1 при отображении

является обратной к функции (1). Она также является дробно-линейной и однозначной на расширенной комплексной плоскости, т. е. здесь функция (1) является однолистной.

Каждое дробно-линейное отображение может быть получено в результате последовательного выполнения трех отображений: линейного, отображения w = 1/z и снова линейного отображения.

Дробно-линейные отображения переводят:

1) окружность или прямую в окружность или прямую (круговое свойство);

2) пару точек, симметричных относительно окружности, – в пару то- чек, симметричных относительно образа этой окружности (свойство сохранения симметрии). Здесь «окружность», в частности, может быть прямой, если под последней понимать окружность бесконечного радиуса.

Существует единственное дробно-линейное отображение, которое три разных точки z1, z2, z3 переводит соответственно в три разные точки w1, w2, w3. Это отображение задается формулой

Найдите образ окружности z 1 при отображении

Если одна из точек zk или wk (k =1, 2, 3) является бесконечно удаленной точкой, то в формуле (2) разности, в которые входит zk или wk, требуется заменить единицами.

Существует бесконечно много дробно-линейных отображений, которые заданную окружность γ отображают на заданную окружность Г, причем область D, для которой γ является границей, отображается на одну из областей, для которой Г является границей.

Для обеспечения единственности дробно-линейного отображения достаточно выполнение одного из условий:

1) заданная точка z0 ∈ D отображается в заданную точку w0 ∈ D’, а любая кривая, выходящая из точки z0, поворачивается на заданный угол α w0 = f (z0), α = arg(f ‘(z0));

2) точки z0 ∈ D и z1 ∈ γ отображаются соответственно в заданные точки w0 ∈ D’ и w1 ∈ Γ.

Пример 1. Найти образ окружности, заданной уравнением

x 2 + y 2 + 2x − 4y + 1 = 0,

при отображении w = 1/z.

Решение. На основании кругового свойства дробно-линейного отображения окружность переходит в окружность. Для ее нахождения на заданной окружности x 2 + y 2 + 2x − 4y + 1 = 0, выберем три точки, например: z1 = −1 z2 = 1 + 2i, z3 = −3 + 2i, образами которых при отображении w = 1/z будут точки

Найдите образ окружности z 1 при отображении

Точками w1, w2, w3 однозначно определяется образ данной окружности, уравнение которой:

Найдите образ окружности z 1 при отображении

Для отображения w = 1/z имеем

Найдите образ окружности z 1 при отображении

Выразив отсюда x = x(u, v), y = (u, v) и подставив в уравнение заданной окружности, получим искомый образ (3).

Пример 2. Найти образ области D при отображении Найдите образ окружности z 1 при отображении, где D = 0 при данном отображении.

Решение. По условию имеем три пары соответствующих точек

Применяя формулу (2), получим искомое дробно-линейное отображение Найдите образ окружности z 1 при отображении.

Найдем теперь образ верхней полуплоскости, границей которой является действительная ось. Согласно круговому свойству действительная ось отображается в окружность. Чтобы найти ее, на действительной оси выберем три точки, например: z1 =1, z2 = 0, z3 = −1, образами которых бу- дут точки w1 = 1, w2 = −i, w3 = −1. Они лежат на окружности |w| =1. По принципу соответствия границ получаем, что образом верхней полуплоскости будет область D’= 1) ил и сжатие (рис. 5). Тем самым, преобразование вида 0 любой круг можно сделать единичным кругом с центром в нуле (рис. 6), любую полуплоскость можосделать верхней полуплоскостью, любой отрезок прямой можно преобразовать в отрезок [0, 1) вещественной оси (рис. 7), любой луч — в положительный луч вещественной оси (рис. 8). б) Рис. 6 растяжение (им) О перенос в) поворот перенос рас гяжение Рис. 7 перенос поворот Рис.8 в) б) В) 4.

Преобразование плоскости z,

переводящее три различные точки z, zi, z3 в три различныеточт плоскости (рис.9). Рассмотрим пример, показывающий, как пользоваться приведенной ниже табли- цей.

Пример с решением:

Отобразить круг с разрезом по радиусу (рис. 10) взаимно однозначно и конформно на единичный круг с центром в нуле. 4 А. Применяя простейшие преобразования плоскости, приведем заданную область к области, имеющейся в таблице. 1. Переместим центр заданного круга в нулевую точку (см. рис. 11): .

Имеем: круг с разрезом 2. Повернем полученный круг по часовой стрелке на угол (см. рис. 12) . Имеем: круг с разрезом arg 3. Сожмем круг в три раза (см. рис. 13) Имеем: круг с разрезом Таким образом, исходная область приводится к имеющейся в таблице при помощи следующего преобразования Б. 1. Указанная область — круг с разрезом — приведена в таблице под № 30. Функция Жуковского КОНФОРМНЫЕ ОТОБРАЖЕНИЯ преобразует эту область в плоскость с разрезом по отрезку [-1, 5] вещественной оси (рис. 14). 2. Указанная область приведена в таблице под № 22.

Применяя дробно-линейное преобразование преобразуем эту область в плоасость с разрезом по лучу [0, +оо) вещественной оси (рис. 15).

3. Указанная область приведена в таблице под № 6. Извлекая квадратный корень преобразуем эту область в верхнюю полуплоскость Im z6 > 0 (рис. 16). 4. Указанная область приведона в таблице под Ng 11. Применяя дробно- линейное преобразование преобразуем эту область в единичный круге центром в нуле Последовательно выражая z* через z^-i, получим взаимно однозначное и конформное преобразование заданного на комплексной плоскости г круга с разрезом по радиусу на единичный круг комплексной плоек ости tr. р- Конформное отображение заданными областями определяется неоднозначно.

Пример с решением:

Отобразить полукруг (рис.18) взаимно однозначно и конформно на верхнюю полуплоскость Im w > 0. . Дробно-линейное отображение преобразует заданный полукруг в прямой угол 2. Указанная область приведена в таблице под Ne 4 (п = 2). Возводя в квадрат Б. Заданная область приведена в таблице за No 9. Искомое преобразование имеет вид чю- Оба отображения w -заданный полукруг в верхнюю полуплоскость переводит взаимно однозначно и конформно Организация таблицы и правила пользования ею.

Как будет показано в конце параграфа, такая стандартизация удобна для практического использования. Часто приводится только преобразование, сводящее заданную область к ранее рассмотренной. В этом случае дается ссылка на преобразование, переводящее полученную область в стандартную (единичный круг с центром в нуле или верхнюю полуплоскость). Основные элементарные функции.

Таблица Плоскость с разрезом по действительному лучу [О, Плоскость с разрезами Плоскость с разрезом по действительному лучу [0, +ю[ Плоскость с разрезом по отрезку 10, 1] Плоскость с разрезом по действительному лучу (0, +«>( Плоскость с разрезами по действительным лучам J -оо, 0] и (I, +оо[ Плоскость с разрезом по действительному лучу [0, +«>( Плоскость с разрезом по отрезку lu. zi] Плоскость с разрезом по отрезку (О, 1J № 21 1лоскость с разрезами ю лучам, лежащим ia прямой, проходящей через ачало координат по действительным лучам ]-«ю, 0] и (1.

Плоскость с разрезом по действительному лучу (0, +во( Плоскость с разрезом по дуге окружности Ixl — 1, lm z > О Плоскость с разрезом по дуге окруж ности III — I, Re z > О Плоскость с разрезом по действительн ому лучу (0, Плоскость с разрезом no дуге окруж ности Плоскость с разрезом по действительному лучу [С, + со [ № 25 Полуплоскость с разрезами Полуплоскость l с разрезом по отрезку [0, />

Плоскость с разрезом по действительному лучу [ — I, Полуплоскость с разрезом по отрезку Полуплоскость Im г > О с разрезами по отрезку [0, oi) и мнимому лучу №28 Полуплоскость с разрезом по ду| е окружности по действительным лучам |- по действительным лучам 1 — оо, -Л2] с разрезом по мнимому лучу Круг с разрезами Круг 1 с разрезом по отрезку (1/2, 1J №30 Плоскость с разрезом по отрезку 1 с разрезами по отрезкам, являющимися продолжениями его диаметра Внешность единичного круга Iwl > 1 с разрезами по отрезкам, лежащим на действительной оси Полуируг с разрезами -г2

Nfc 36 Круг Iwl с разрезом по отрезку [ -1/4, 1] Полукруг , с разрезом по отрезку (0, i/2) Полукруг , с разрезом по отрезку [//2, /) Круг с разрезами по отрезкам № 37 Полукруг с разрезами по отрезкам [0. al) и [Ы. /). где N? 38 Круг с разрезами по отрезкам 1-1. — угол с разрезами Угол с разрезом по действительному лучу Ах» г — т/4 с началом в точке 1 + / Полуплоскость Im W > 0 с разрезом по мнимому лучу с началом в точке 12/, +/•©( Nf39 Плоскость с разрезами по действительным лучам Угол с разрезом по действительному лучу Arg z — т/л с началом в точке Полоса с разрезами w — с*

Полуплоскость Im с разрезом по дуге окружности иг » с Полоса 0 т с разрезом по мнимому отрезку ( Полуплоскость Im с разрезом по дуге окружности w — е Полоса 0 разрезом по мнимому отрезку fW/2, TiJ N? Полоса Полуплоскость Im w > О с разрезами по мнимым с разрезами по дуге отрезкам [0, al и [Ы, «1, окружности w « t*, КОНФОРМНЫЕ ОТОБРАЖЕНИЯ М43 Полоса Плоскость с разрезом по действительному лучу (0. +«( №44 Полоса с разрезом Полуплоскость Im по действительному с разрезом по мнимому лучу I отрезку [О, /I

Полоса 0 Полоса с разрезом по действительному лучу I №46 Полоса Полоса 0 с разрезом по действительному лучу R №47 Область 1 Полоса 01 Область с удаленным кругом Re Полоса Полуплоскость Im z > О с удаленным круговым сегментом Угол №50 -Ш Полуплоскость Im с удаленным круговым сегментом Полуплоскость Im w > 0 № 51 Полуполоса Полуплоскость Im w > Полуплоскость Im Полуполоса с удаленными полукругами № 53

Полуполоса Полуполоса N? 54 Угол Полуплоскость Im w > 0 с удаленным сектором единичного круга Ne 55 Угол Im z с удаленным полукругом Полуполоса 0 Внешность параболы Полуплоскость Im w Внутренность параболы Полуплоскость Im № 58 Внешность гиперболы Полуплоскость Im w Внутренность правой ветви гиперболы Полуплоскость Iro W > О Внешность эллипса Внешность круга М > I

Присылайте задания в любое время дня и ночи в ➔ Найдите образ окружности z 1 при отображенииНайдите образ окружности z 1 при отображении

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🎦 Видео

Физика - движение по окружностиСкачать

Физика - движение по окружности

Образ функции комплексной переменнойСкачать

Образ функции комплексной переменной
Поделиться или сохранить к себе: