Напряженность электрического поля в центре окружности

Видео:Урок 218. Напряженность электрического поляСкачать

Урок 218. Напряженность электрического поля

Напряженность электрического поля в центре окружности

Положительный точечный заряд q находится на окружности. Точечный заряд Q того же знака перемещают по этой окружности. Модуль напряжённости электрического поля, создаваемого этими зарядами в центре окружности, будет минимален, когда заряд Q будет находиться в точке

Величина напряженности электрического поля, создаваемого точечным зарядом, пропорциональна величине заряда и обратно пропорциональна квадрату расстояния до него. При этом вектор напряженности направлен «от» положительного заряда и «к» отрицательному. Также имеет место принцип суперпозиции: поле, создаваемое системой зарядов в некоторой точке, есть геометрическая сумма векторов напряженностей полей от всех зарядов по отдельности.

Таким образом, поскольку заряды q и Q имеют одинаковые знаки, заключаем, что модуль напряжённости электрического поля, создаваемого этими зарядами в центре окружности, будет минимален, когда поля будут максимально компенсировать друг друга (будут иметь противоположные направления), то есть заряд Q нужно расположить в точке B.

Видео:Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Напряженность электрического поля — это отношение вектора силы (vec) , с которой поле действует на пробный заряд (q) , к самому пробному заряду с учетом его знака.

Единицы измерения: (displaystyle [text/text]) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

Напряженность электрического поля в центре окружности

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда (q) по поверхности площади (S) поверхностная плотность заряда (displaystyle sigma) постоянна и равна

Напряженность электростатического поля точечного заряда Q в точке A, удаленной на расстояние (r) от заряда (Q) , определяется формулой:

Принцип суперпозиции полей

Пусть заряды (displaystyle q_1, q_2, q_3. , q_n) по отдельности создают в данной точке поля (vec_1) , (vec_2) . (vec_n) . Тогда система этих зарядов создает в данной точке поле (vec) , равное векторной сумме напряженностей полей отдельных зарядов.

Разберемся, что такое принцип суперпозиции на примере электрического поля. Благодаря ему, можно найти напряженность двух точечных зарядов, в каждой точке поля (А) . Рассмотрим рисунок:

Напряженность электрического поля в центре окружности

здесь видно, что для нахождения направления результирующего вектора (vec) , нужно сложить вектора (vec_1) и (vec_2) по правилу параллелограмма. Это и есть принцип суперпозиции.

Поток вектора напряженности электростатического поля (vec) через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную (varepsilon_0) .

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Проведём сферическую поверхность радиусом (r>R) . Пусть её заряд равен (q) . По теореме Гаусса:

Заряженный шар

Рассмотрим электрическое поле равномерно заряженного шара. Напомним, что объём шара равен (V=dfracpi R^3) . Тогда его заряд (q=dfracpi R^3rho) . Напряжённость поля вне шара (r>R) можно найти так же, как и вне сферы:

Для нахождения напряжённости внутри шара применим теорему Гаусса для сферической поверхности радиусом (r . По теореме Гаусса:

Видео:НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полей

Напряженность электрического поля

Напряженность электрического поля в центре окружности

О чем эта статья:

8 класс, 10 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:3.9Скачать

3.9

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

Напряженность электрического поля в центре окружности

Видео:3.31Скачать

3.31

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Видео:10 класс, 18 урок, Напряженность электрического поляСкачать

10 класс, 18 урок, Напряженность электрического поля

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

расстояние между зарядами очень мало — порядка 10 -15 м;

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Видео:Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

Напряженность электрического поля в центре окружности

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: Напряженность электрического поля в центре окружностигде q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Напряженность электрического поля в центре окружности

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Напряженность электрического поля в центре окружности

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Видео:3.18Скачать

3.18

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

Напряженность электрического поля в центре окружности

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

🎬 Видео

Принцип суперпозиции полей в решении задачСкачать

Принцип суперпозиции полей в решении задач

Выполнялка 89.Задача на нахождение НапряженностиСкачать

Выполнялка 89.Задача на нахождение Напряженности

Электрическое поле. Линии напряженности электрического поляСкачать

Электрическое поле. Линии напряженности электрического поля

напряженность Упр17зад 5Скачать

напряженность Упр17зад 5

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Электрическое поле/Напряженность и потенциал поля/Разность потенциалов/Работа поляСкачать

Электрическое поле/Напряженность и потенциал поля/Разность потенциалов/Работа поля

Физика 10 класс (Урок№27 - Напряжённость и потенциал электростатического поля.Разность потенциалов.)Скачать

Физика 10 класс (Урок№27 - Напряжённость и потенциал электростатического поля.Разность потенциалов.)

2. Поле на оси заряженного диска Электростатика и магнитостатикаСкачать

2. Поле на оси заряженного диска Электростатика и магнитостатика

Поле в центре дуги и на продольной оси однородно заряженного стержняСкачать

Поле в центре дуги и на продольной оси однородно заряженного стержня

Напряженность электростатического поляСкачать

Напряженность электростатического поля

Лекция №1 "Закон Кулона, напряженность электрического поля"Скачать

Лекция №1 "Закон Кулона, напряженность электрического поля"
Поделиться или сохранить к себе: