Многоугольник чем отличается от треугольника

Что такое многоугольник в математике — виды, свойства и примеры фигур с названиями

Геометрическую фигуру, ограниченную со всех сторон ломанной линией, называют многоугольником. В математике такое понятие применимо для множества объектов, образованных из трёх и более отрезков. Фигуры, относящиеся к этому классу, могут иметь как произвольную форму, так и строгую. Например, семиугольник, квадрат. Но при этом их всех объединяют одинаковые свойства и ряд правил.

Многоугольник чем отличается от треугольника

Содержание
  1. Общие сведения
  2. Простейшие четырёхугольники
  3. Треугольный многоугольник
  4. Теорема об углах
  5. Геометрическая фигура многоугольник
  6. Основные понятия
  7. Виды фигур
  8. Треугольник
  9. Четырехугольник
  10. Видео
  11. Чем отличается треугольник от многоугольника?
  12. Какие фигуры являются многоугольниками?
  13. Чем фигура отличается от многоугольника?
  14. Сколько углов может быть у многоугольника?
  15. Что такое неправильный многоугольник?
  16. Какие фигуры являются многогранниками?
  17. Какие элементы имеет многоугольник?
  18. Чем отличается четырехугольник от многоугольника?
  19. Какие бывают многоугольник?
  20. Как называют и обозначают многоугольник?
  21. Как определить сколько углов у многоугольника?
  22. Когда многоугольник называется выпуклым?
  23. Когда многоугольник называется описанным около окружности?
  24. Какой многоугольник является самым простым?
  25. Какая фигура называется правильным многоугольником?
  26. Как найти площадь многоугольника?
  27. Видео

Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

Общие сведения

Основной линией, с помощью которой образовывается многоугольная фигура, называется ломанная. Это несколько последовательно соединённых между собой отрезков. Если при этом они друг друга не пересекают, кривую считают простой. В ином случае говорят про ломанную с самопересечением. Каждый отрезок, входящий в кривую, называют звеном. Точки, ограничивающие его — вершинами.

Многоугольник чем отличается от треугольника

Нарисовать ломанную можно по-разному. Главное, соблюдать правило последовательного соединения точек отрезков. Если при этом получится рисунок, на котором первая вершина начального отрезка совпадёт с последней вершиной (ломанная замкнётся), такая кривая называется замкнутой. Но чаще используется другое название — многоугольник. Другими словами, это фигура, образованная соединёнными между собой прямыми, состоящая из отрезков без самопересечения.

Любого вида многоугольник состоит из следующих частей:

Две прямые линии, соединяющиеся у вершины, образуют угол. Он получается при пересечении лучей, проходящих по сторонам фигуры. Именно от количества углов, получаемых при построении, тот или иной геометрический объект может иметь своё уникальное название. Например, тело с тремя углами — треугольник, четырьмя — четырёхугольник, пятью — пятиугольник.

Многоугольник чем отличается от треугольника

Понятия применимы не только к плоскости, но и к пространству. Так, во втором случае с помощью ломанной образовывается пространственный многоугольник. Его особенность в том, что вершины тела не лежат в одной плоскости и как минимум фигура должна иметь их по меньшей мере 4. Многоугольник с n вершинами называется nугольником.

Каждая фигура со множеством углов имеет особые линии. Это такие отрезки, построение которых помогает охарактеризовать тело. Одной из них является диагональ. Это элемент, который получается при соединении отрезком двух несоседних вершин. Таких замкнутых прямых в многоугольнике может быть много. При этом из одной вершины можно строить несколько диагоналей.

А также все многоугольники разделяют на 2 типа — выпуклые и невыпуклые. Тело хотя бы с одним углом, смотрящим внутрь, относится ко второму типу, а тот, чьи углы направлены наружу — к первому. В школьном курсе геометрии изучают только второй вид, расположенный на плоскости. Более сложными видами многоугольников занимается стереометрия и планиметрия.

Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Простейшие четырёхугольники

Любой многоугольник, который состоит из четырёх углов, называют четырёхугольным. Он относится к простейшим геометрическим телам. Если о нём ничего не известно, его считают произвольным, то есть фигурой, у которой нет особенных углов или сторон. В другом случае четырёхугольники имеют собственные названия.

Наиболее часто приходится сталкиваться со следующими видами:

  • прямоугольник — четырёхугольник, у которого все углы прямые, то есть равняются 90 0 ;
  • ромб — фигура с четырьмя сторонами одинаковой длины;
  • квадрат — многоугольник, удовлетворяющий одновременно условиям ромба и прямоугольника.

Многоугольник чем отличается от треугольника

Для всех этих видов характерно, что каждая из фигур имеет 2 пересекающиеся диагонали. Причём точка их соприкосновения делит отрезок на 2 равные части. Кроме этого, для прямоугольника и квадрата длина одной диагонали равна другой. Если у четырёхугольного прямоугольника обозначить стороны a и b, противоположные им грани также будут a и b.

Каждый отрезок, образующий многоугольник, имеет свою длину. При их сложении получается периметр фигуры. Для его обозначения используют заглавную латинскую букву P. Например, если есть многоугольник, образованный сторонами AB, BC, CA, его периметр будет равняться: Pabc = AB + BC + CA. Можно обратить внимание, что количество углов соответствует числу сторон, складываемых для нахождения P. Это важный параметр, позволяющий оценить размер фигуры.

Из-за особенностей прямоугольника формулу для расчёта периметра можно переписать так: P = 2*(a + b). В то же время площадь такой фигуры находится путём простого перемножения примыкающих сторон: S = a*b. Параметры квадрата можно вычислить, зная длину только одной стороны. Всё дело в том, что длины отрезков, из которых он состоит, равны друг другу, поэтому для квадрата периметр находится как P = 4*a, а площадь: S = a*a = a 2 .

Прямая четырёхугольная фигура является частным случаем ромба. А значит, что все формулы, указанные для квадрата, справедливы и при применении к нему. Следует отметить, что площадь ромба может быть найдена и как половина произведения его диагоналей.

Видео:МногоугольникСкачать

Многоугольник

Треугольный многоугольник

Такую фигуру называют треугольником. Она состоит из трёх углов и такого же числа сторон. Их, принято обозначать маленькими буквами a, b, c или подписывать двумя заглавными по названиям вершин, которые являются началом и концом отрезка. Например, треугольник ABC содержит стороны: AB = a, BC = b, AC = c.

В зависимости от особенностей, фигура может называться:

  • разносторонней — многоугольник, у которого все 3 стороны не равны;
  • равнобедренной — длины любых двух граней совпадают;
  • равносторонней (правильной) — все стороны фигуры одинаковые.

Многоугольник чем отличается от треугольника

Но несмотря на классификацию, все перечисленные виды обладают общими свойствами. Считается, что угол любого плоского треугольника образуется при пересечении двух лучей, содержащих его стороны, то есть если говорят об ∠A, то подразумевают, что был лучи AB и АС, при построении которых он и образовался. Таким образом, он заключается не между сторонами, а лучами.

Как и для любого другого многоугольника, у треугольника есть периметр и площадь. Следуя из определения первого, для фигуры с вершинами ABC он будет равен сумме длин всех сторон: P = a + b + c. У треугольников существуют так называемые замечательные линии: медиана, биссектриса, высота.

Многоугольник чем отличается от треугольника

Эти 3 параметра определяют свойства треугольной фигуры. С их помощью можно находить, площадь, стороны, значения углов. Определение медианы звучит так: это прямая, проведённая из угла к противолежащей стороне таким образом, что разделяет её пополам. Под биссектрисой же понимают отрезок, разделяющий угол на 2 равные части. Высотой называют перпендикуляр, опущенный на противоположную сторону из вершины.

Треугольник, который выглядит, как прямой угол, называют прямоугольным. То есть построив в любом многоугольнике с тремя углами высоту, можно получить две фигуры, обе из которых точно будут прямоугольными. Боковые грани, перпендикулярные друг другу, называют катетами, а оставшуюся сторону — гипотенузой. По сути, тело представляет собой разделённый диагональю квадрат. Отсюда площадь многоугольника будет равняться произведению катетов, делённых на 2: S = a*b/2. А также следует отметить, что у равнобедренного треугольника медиана, высота и биссектриса совпадают.

Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

Теорема об углах

Многоугольники бывают выпуклые и вогнутые. Чтобы узнать, какой из них приходится рассматривать в том или ином случае, можно сделать следующее. Через каждую сторону провести прямую. Если по отношению к любой из них фигура будет лежать в одной полуплоскости относительно неё, многоугольник считается выпуклым, в ином случае — вогнутым.

Для первого типа существуют важные соотношения. Пусть имеется произвольный многоугольник. Интерес представляет сумма всех его углов. Посчитать её можно следующим образом. Нужно взять любую вершину и соединить её со всеми оставшимися прямой линией. В результате получится несколько треугольников. Затем нужно посчитать их количество. Например, в шестиугольнике их будет 4, восьмиугольнике — 6. Это число легко находится, так как существует правило, согласно которому в любой n-угольной фигуре можно построить n-2 треугольника.

Многоугольник чем отличается от треугольника

В каждом треугольнике сумма углов равняется 180 градусов. Отсюда следует, что искомая сумма будет равняться 180 0 * (n — 2). Например, для восьмиугольного она равняется 180 * (8 — 2) = 1080 0 . Для многоугольника можно вести понятие внешнего угла.

К любой вершине можно построить 2 таких смежных угла. Если взять каждый из них, то их сумма будет равняться: a1 + a2 +…+ an = 360 0 . Доказать это можно так. Угол a1 равняется (180 — ∠A1), a2 = (180 — ∠A2) и так далее. Таких слагаемых будет n штук. Тогда можно записать, 180 * n — 180 * (n — 2) = 180 * 2 = 360. Таким образом, сумма всех внешних углов равняется 360 0 .

Лучше всего понять сказанное можно, рассмотрев пример, рассчитанный на учащихся средней школы. Пусть есть правильный шестиугольник. Нужно определить его угол. У такой фигуры все стороны, а значит и углы равны. Для начала следует определить их сумму. Она будет равняться 180 * (4−2) = 180 0 * 4 = 720 0 . Но так как это шестиугольник, результат необходимо поделить на 6. Таким образом, искомый угол правильной фигуры будет равняться 120 градусам.

Видео:Многоугольники. 8 класс.Скачать

Многоугольники. 8 класс.

Геометрическая фигура многоугольник

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех. Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника. В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Многоугольник чем отличается от треугольника

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон, по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков — четырехугольником, из пяти — пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку — по часовой стрелке или против нее.

Многоугольник чем отличается от треугольника

Видео:Выпуклые и невыпуклые многоугольникиСкачать

Выпуклые и невыпуклые многоугольники

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

  1. Если вершины являются концами одной стороны, они называются соседними.
  2. Если отрезок соединяет между собой несоседние вершины, то он имеет название диагонали. У треугольника не может быть диагоналей.
  3. Внутренний угол — это угол при одной из вершин, который образован двумя его сторонами, сходящимися в этой точке. Он всегда располагается во внутренней области геометрической фигуры. Если многоугольник невыпуклый, его размер может превосходить 180 градусов.
  4. Внешний угол при определенной вершине — это угол смежный с внутренним при ней же. Иными словами, внешним углом можно считать разность между 180° и величиной внутреннего угла.
  5. Сумма величин всех отрезков носит название периметра.
  6. Если все стороны и все углы равны — он носит название правильного. Правильными могут быть только выпуклые.

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

  1. Многоугольник называется плоским, если ограничивает конечную часть плоскости. Эта геометрическая фигура может быть вписанной в окружность или описанной вокруг окружности.
  2. Выпуклым называется n-угольник, который соответствует одному из условий, приведенных ниже.
  3. Фигура расположена по одну сторону от прямой линии, которая соединяет две соседних вершины.
  4. Эта фигура служит общей частью или пересечением нескольких полуплоскостей.
  5. Диагонали располагаются внутри многоугольника.
  6. Если концы отрезка располагаются в точках, которые принадлежат многоугольнику, весь отрезок принадлежит ему.
  7. Фигура может называться правильной, если у нее все отрезки и все углы равны. Примерами могут служить квадрат, равносторонний треугольник или правильный пятиугольник.
  8. Если n-угольник невыпуклый, все стороны и углы его равны, а вершины совпали с таковыми правильного n-угольника, он называется звездчатым. У таких фигур могут иметься самопересечения. Примерами могут служить пентаграмма или гексаграмма.
  9. Треугольник или четырехугольник называется вписанным в окружность, когда все его вершины располагаются внутри одной окружности. Если же стороны этой фигуры имеют точки соприкосновения с окружностью, это многоугольник описанным около некоторой окружности.

Любой выпуклый n-угольник можно поделить на треугольники. При этом количество треугольников бывает меньше количества сторон на 2.

Многоугольник чем отличается от треугольника

Видео:Математика 5 Треугольники МногоугольникиСкачать

Математика 5 Треугольники  Многоугольники

Виды фигур

Треугольник

Это многоугольник с тремя вершинами и тремя отрезками, соединяющими их. При этом точки соединения отрезков не лежат на одной прямой.

Точки соединения отрезков — это вершины треугольника. Сами отрезки называются сторонами треугольника. Общая сумма внутренних углов каждого треугольника равняется 180°.

По соотношениям между сторонами все треугольники можно подразделять на несколько видов:

  1. Равносторонние — у которых длина всех отрезков одинаковая.
  2. Равнобедренные — треугольники, у которых равны два отрезка из трех.
  3. Разносторонние — если длина всех отрезков разная.

Кроме того, принято различать следующие треугольники:

  1. Остроугольные.
  2. Прямоугольные.
  3. Тупоугольные.

Многоугольник чем отличается от треугольника

Четырехугольник

Четырехугольником называется плоская фигура, имеющая 4 вершины и 4 отрезка, которые их последовательно соединяют.

  1. Если все углы четырехугольника прямые — эта фигура называется прямоугольником.
  2. Прямоугольник, у которого все стороны имеют одинаковую величину, называется квадратом.
  3. Четырехугольник, все стороны которого равны, называется ромбом.

На одной прямой не может находиться сразу три вершины четырехугольника.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Видео

Дополнительную информацию о многоугольниках вы найдете в этом видео.

» width=»560″ height=»314″ allowfullscreen=»allowfullscreen»>

Видео:Сумма углов многоугольникаСкачать

Сумма углов многоугольника

Чем отличается треугольник от многоугольника?

Видео:Геометрия 8 класс (Урок№1 - Многоугольники. Четырёхугольник.)Скачать

Геометрия 8 класс (Урок№1 - Многоугольники. Четырёхугольник.)

Какие фигуры являются многоугольниками?

Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной. Если граничная ломаная не имеет точек самопересечения, многоугольник называется простым. Например, треугольники и квадраты — простые многоугольники, а пятиконечная звезда — нет.

Видео:9 класс, 21 урок, Правильный многоугольникСкачать

9 класс, 21 урок, Правильный многоугольник

Чем фигура отличается от многоугольника?

МНОГОУГОЛЬНИК — (на плоскости) геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами многоугольника, а их концы вершинами многоугольника. По числу вершин различают треугольники, четырехугольники и т. . Многоугольник — Многоугольник.

Видео:Многоугольники // Математика 1 классСкачать

Многоугольники // Математика 1 класс

Сколько углов может быть у многоугольника?

Любой многоугольник, правильный или неправильный имеет столько углов, сколько сторон. или 180n−360 градусам, где n– вершина многоугольника. Это связано с тем, что любой простой N-угольник можно считать состоящим из (n−2) треугольников, каждый из которых имеет сумму углов π радианов или 180 градусов.

Видео:9 класс. Геометрия. Правильные многоугольники и их свойства. Правильный треугольник. Урок #4Скачать

9 класс. Геометрия. Правильные многоугольники и их свойства. Правильный треугольник. Урок #4

Что такое неправильный многоугольник?

Когда их стороны и их внутренние углы не равны (то есть они не совпадают друг с другом), мы можем говорить о неправильных многоугольниках . . С другой стороны, если внутренние углы и стороны многоугольника равны, фигура будет классифицироваться как правильный многоугольник .

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Какие фигуры являются многогранниками?

Фигуры, изучаемые стереометрией: куб, шар, конус, параллелепипед, пирамида и т. д. Это слово στερεομετρία происходит от древнегреческих слов «stereos» — объёмный, пространственный и «metria» — измерение. Если поверхности геометрических тел составлены из многоугольников, то такие тела называются многогранниками.

Видео:Что такое периметр. Как найти периметр многоугольника?Скачать

Что такое периметр. Как найти периметр многоугольника?

Какие элементы имеет многоугольник?

Многоугольник — это простая замкнутая ломаная. Вершины ломаной называются вершинами многоугольника, звенья ломаной — сторонами многоугольника. Диагонали — это отрезки, соединяющие несусидни вершины многоугольника. n-угольник-это многоугольник с n вершинами.

Видео:ЛоманаяСкачать

Ломаная

Чем отличается четырехугольник от многоугольника?

Если замкнутая ломаная линия состоит из трех отрезков, то такой многоугольник называется треугольником, из четырех отрезком — четырехугольником, из пяти отрезков — пятиугольником и т. д. Отрезки (звенья) замкнутой ломаной линии называются сторонами многоугольника, а общие точки двух отрезков — его вершинами.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Какие бывают многоугольник?

Виды многоугольников

  • Четырехугольники Четырехугольники, соответственно, состоят из 4-х сторон и углов. .
  • Параллелограммы Параллелограмм — это выпуклый четырехугольник с противоположными параллельными сторонами (на рис. .
  • Трапеции .
  • Ромб .
  • Прямоугольники .
  • Квадраты

Видео:Многоугольник. Сумма углов многоугольникаСкачать

Многоугольник. Сумма углов многоугольника

Как называют и обозначают многоугольник?

Многоугольник называют по количеству углов. Так, если у плоской фигуры 4 угла, то это четырехугольник, если 5 — пятиугольник, 6 — шестиугольник, и т. д. Обычно вершины многоугольника обозначают латинскими буквами и так его называют.

Видео:Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс

Как определить сколько углов у многоугольника?

Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом. Количество углов многоугольника всегда равно количеству его сторон.

Видео:Математика 2 класс (Урок№15 - Периметр многоугольника.)Скачать

Математика 2 класс (Урок№15 - Периметр многоугольника.)

Когда многоугольник называется выпуклым?

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Когда многоугольник называется описанным около окружности?

Многоугольник, все вершины которого находятся на окружности, называется вписанным в окружность, а окружность — описанной около многоугольника. Многоугольник, все стороны которого — касательные к окружности, называется описанным около окружности, а окружность — вписанной в многоугольник.

Какой многоугольник является самым простым?

Самый простой многоугольник – треугольник.

Какая фигура называется правильным многоугольником?

Многоугольник называют правильным, если у него равны стороны и углы . Примерно так определяются и правильные многогранники. Выпуклый многогранник называется правильным, если его грани- равные правильные многоугольники и двухгранные углы при всех рёбрах равны между собой.

Как найти площадь многоугольника?

Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.

  1. Периметр – сумма сторон многоугольника.
  2. Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).

Поделиться или сохранить к себе: