Метод треугольников и трапеций

Вычисление определённых интегралов: базовые алгоритмы

Метод треугольников и трапеций
В этой публикации описаны простейшие методы вычисления интегралов функций от одной переменной на отрезке, также называемые квадратурными формулами. Обычно эти методы реализованы в стандартных математических библиотеках, таких как GNU Scientific Library для C, SciPy для Python и других. Публикация имеет целью продемонстрировать, как эти методы работают «под капотом», и обратить внимание на некоторые вопросы точности и производительности алгоритмов. Также хотелось бы отметить связь квадратурных формул и методов численного интегрирования обыкновенных дифференциальных уравнений, о которых хочу написать ещё одну публикацию.

Определение интеграла

Интегралом (по Риману) от функции Метод треугольников и трапецийна отрезке Метод треугольников и трапецийназывается следующий предел:

Метод треугольников и трапеций

где Метод треугольников и трапеций— мелкость разбиения, Метод треугольников и трапеций, Метод треугольников и трапеций, Метод треугольников и трапеций— произвольное число на отрезке Метод треугольников и трапеций.

Если интеграл от функции существует, то значение предела одно и то же вне зависимости от разбиения, лишь бы оно было достаточно мелким.
Метод треугольников и трапеций
Более наглядно геометрическое определение — интеграл равен площади криволинейной трапеции, ограниченной осью 0x, графиком функции и прямыми x = a и x = b (закрашенная область на рисунке).

Квадратурные формулы

Определение интеграла (1) можно переписать в виде

Метод треугольников и трапеций

где Метод треугольников и трапеций— весовые коэффициенты, сумма которых должна быть равна 1, а сами коэффициенты — стремиться к нулю при увеличении числа Метод треугольников и трапецийточек, в которых вычисляется функция.

Выражение (2) — основа всех квадратурных формул (т.е. формул для приближенного вычисления интеграла). Задача состоит в том, чтобы выбрать точки Метод треугольников и трапецийи веса Метод треугольников и трапецийтаким образом, чтобы сумма в правой части приближала требуемый интеграл как можно точнее.

Вычислительная задача

Задана функция Метод треугольников и трапеций, для которой есть алгоритм вычисления значений в любой точке отрезка Метод треугольников и трапеций(имеются в виду точки, представимые числом с плавающей точкой — никаких там функций Дирихле!).

Требуется найти приближённое значение интеграла Метод треугольников и трапеций.
Решения будут реализованы на языке Python 3.6.

Для проверки методов используется интеграл Метод треугольников и трапеций.

Кусочно-постоянная аппроксимация

Идейно простейшие квадратурные формулы возникают из применения выражения (1) «в лоб»:

Метод треугольников и трапеций

Т.к. от метода разбиения отрезка точками Метод треугольников и трапецийи выбора точек Метод треугольников и трапецийзначение предела не зависит, то выберем их так, чтобы они удобно вычислялись — например, разбиение возьмём равномерным, а для точек вычисления функции рассмотрим варианты: 1) Метод треугольников и трапеций; 2) Метод треугольников и трапеций; 3) Метод треугольников и трапеций.

Получаем методы левых прямоугольников, правых прямоугольников и прямоугольников со средней точкой, соответственно.

Для анализа производительности квадратурных формул построим график погрешности в координатах «число точек — отличие численного результата от точного».

Метод треугольников и трапеций

Что можно заметить:

  1. Формула со средней точкой гораздо точнее, чем с правой или левой точками
  2. Погрешность формулы со средней точкой падает быстрее, чем у двух остальных
  3. При очень мелком разбиении погрешность формулы со средней точкой начинает возрастать
    Первые два пункта связаны с тем, что формула прямоугольников со средней точкой имеет второй порядок аппроксимации, т.е. Метод треугольников и трапеций, а формулы правых и левых прямоугольников — первый порядок, т.е. Метод треугольников и трапеций.
    Возрастание погрешности при измельчении шага интегрирования связано с нарастанием погрешности округления при суммировании большого числа слагаемых. Эта ошибка растёт как Метод треугольников и трапеций, что не даёт при интегрировании достигнуть машинной точности.
    Вывод: методы прямоугольников с правой и левой точками имеют низкую точность, которая к тому же медленно растёт с измельчением разбиения. Поэтому они имеют смысл разве что в демонстрационных целях. Метод прямоугольников со средней точкой имеет более высокий порядок аппроксимации, что даёт ему шансы на использование в реальных приложениях (об этом чуть ниже).

Кусочно-линейная аппроксимация

Следующий логический шаг — аппроксимировать интегрируемую функцию на каждом из подотрезков линейной функцией, что даёт квадратурную формулу трапеций:

Метод треугольников и трапеций

Метод треугольников и трапеций
Иллюстрация метода трапеций для n=1 и n=2.

В случае равномерной сетки длины всех отрезков разбиения равны, и формула имеет вид

Метод треугольников и трапеций

Построив график ошибки от числа точек разбиения, убеждаемся, что метод трапеций тоже имеет второй порядок аппроксимации и вообще даёт результаты, слабо отличающиеся от метода прямоугольников со средней точкой (в дальнейшем — просто метод прямоугольников).
Метод треугольников и трапеций

Контроль точности вычисления

Задание в качестве входного параметра числа точек разбиения не слишком практично, поскольку обычно требуется вычислить интеграл не с заданной плотностью разбиения, а с заданной погрешностью. Если подынтегральная функция известна наперёд, то можно оценить погрешность заранее и выбрать такой шаг интегрирования, чтобы заданная точность заведомо достигалась. Но так редко бывает на практике (и вообще, не проще ли при известной наперёд функции и сам интеграл протабулировать наперёд?), поэтому необходима процедура автоматической подстройки шага под заданную погрешность.

Как это реализовать? Один из простых методов оценки погрешности — правило Рунге — разность значений интегралов, рассчитанных по n и 2n точкам, даёт оценку погрешности: Метод треугольников и трапеций. Метод трапеций удобнее для удвоения мелкости разбиения, чем метод прямоугольников с центральной точкой. При расчёте методом трапеций для удвоения числа точек нужны новые значения функции только в серединах отрезков предыдущего разбиения, т.е. предыдущее приближение интеграла можно использовать для вычисления следующего.

Метод прямоугольников не требует вычислять значения функции на концах отрезка. Это означает, что его можно использовать для функций, имеющих на краях отрезка интегрируемые особенности (например, sinx/x или x -1/2 от 0 до 1). Поэтому показанный далее метод экстраполяции будет работать точно так же и для метода прямоугольников. Отличие от метода трапеций лишь в том, что при уменьшении шага вдвое отбрасывается результат предыдущих вычислений, однако можно утроить число точек, и тогда предыдущее значение интеграла также можно использовать для вычисления нового. Формулы для экстраполяции в этом случае необходимо скорректировать на другое соотношение шагов интегрирования.

Отсюда получаем следующий код для метода трапеций с контролем точности:

С таким подходом подынтегральная функция не будет вычисляться по нескольку раз в одной точке, и все вычисленные значения используются для окончательного результата.

Но нельзя ли при том же количестве вычислений функции добиться более высокой точности? Оказывается, что можно, есть формулы, работающие точнее метода трапеций на той же самой сетке.

Кусочно-параболическая аппроксимация

Следующим шагом аппроксимируем функцию элементами парабол. Для этого требуется, чтобы число отрезков разбиения было чётным, тогда параболы могут быть проведены через тройки точек с абсциссами <(x0=a, x1, x2), (x2, x3, x4), . (xn-2, xn-1, xn=b)>.

Метод треугольников и трапеций
Иллюстрация кусочно-параболического приближения на 3 и 5 точках (n=2 и n=3).

Приближая интеграл от функции на каждом из отрезков [xk;xk+2] интегралом от параболической аппроксимации на этом отрезке и считая точки равномерно распределенными (xk+1=xk+h), получаем формулу Симпсона:

Метод треугольников и трапеций

Из формулы (4) напрямую получается «наивная» реализация метода Симпсона:

Для оценки погрешности можно использовать точно так же вычисление интеграла с шагами h и h/2 — но вот незадача, при вычислении интеграла с более мелким шагом результат предыдущего вычисления придётся отбросить, хотя половина новых вычислений функции будет в тех же точках, что и раньше.

Бесполезной траты машинного времени, к счастью, можно избежать, если реализовать метод Симпсона более хитроумным образом. Присмотревшись повнимательнее, заметим, что интеграл по формуле Симпсона может быть представлен через два интеграла по формуле трапеций с разными шагами. Яснее всего это видно на базовом случае аппроксимации интеграла по трём точкам Метод треугольников и трапеций:

Метод треугольников и трапеций

Таким образом, если реализовать процедуру уменьшения шага вдвое и хранить два последних вычисления методом трапеций, метод Симпсона с контролем точности реализуется более эффективно.

Сравним эффективность метода трапеций и парабол:

Как видим, обоими методами ответ можно получть с достаточно высокой точностью, но количество вызовов подынтегральной функции разительно отличается — метод более высокого порядка эффективнее в 32 раза!

Построив график погрешности интегрирования от числа шагов, можно убедиться, что порядок аппроксимации формулы Симпсона равен четырём, т.е. ошибка численного интегрирования Метод треугольников и трапеций(а интегралы от кубических многочленов с помощью этой формулы вычисляются с точностью до ошибок округления при любом чётном n>0!).
Метод треугольников и трапеций
Отсюда и возникает такой рост эффективности по сравнению с простой формулой трапеций.

Что дальше?

Дальнейшая логика повышения точности квадратурных формул, в целом, понятна — если функцию продолжать приближать многочленами всё более высокой степени, то и интеграл от этих многочленов будет всё точнее приближать интеграл от исходной функции. Этот подход называется построением квадратурных формул Ньютона-Котеса. Известны формулы вплоть до 8 порядка аппроксимации, но выше среди весовых коэффициентов wi в (2) появляются знакопеременные члены, и формулы при вычислениях теряют устойчивость.

Попробуем пойти другим путём. Ошибка квадратурной формулы представляется в виде ряда по степеням шага интегрирования h. Замечательное свойство метода трапеций (и прямоугольников со средней точкой!) в том, что для неё этот ряд состоит только из чётных степеней:

Метод треугольников и трапеций

На нахождении последовательных приближений к этому разложению основана экстраполяция Ричардсона: вместо того, чтобы приближать подынтегральную функцию многочленом, по рассчитанным приближениям интеграла Метод треугольников и трапецийстроится полиномиальная аппроксимация, которая при h=0 должна давать наилучшее приближение к истинному значению интеграла.

Разложение ошибки интегрирования по чётным степеням шага разбиения резко ускоряет сходимость экстраполяции, т.к. для аппроксимации порядка 2n нужно всего n значений интеграла методом трапеций.

Если считать, что каждое последующее слагаемое меньше предыдущего, то можно последовательно исключать степени h, имея приближения интеграла, рассчитанные с разными шагами. Поскольку приведённая реализация легко позволяет дробить разбиение вдвое, удобно рассматривать формулы для шагов h и h/2.

Метод треугольников и трапеций

Легко показать, что исключение старшего члена погрешности формулы трапеций в точности даст формулу Симпсона:

Метод треугольников и трапеций

Повторяя аналогичную процедуру для формулы Симпсона, получаем:

Метод треугольников и трапеций

Метод треугольников и трапеций

Если продолжить, вырисовывается такая таблица:

2 порядок4 порядок6 порядок.
I0,0
I1,0I1,1
I2,0I2,1I2,2
...

В первом столбце стоят интегралы, вычисленные методом трапеций. При переходе от верхней строки вниз разбиение отрезка становится вдвое мельче, а при переходе от левого столбца вправо повышается порядок аппроксимации интеграла (т.е. во втором столбце находятся интегралы по методу Симпсона и т.д.).

Элементы таблицы, как можно вывести из разложения (5), связаны рекуррентным соотношением:

Метод треугольников и трапеций

Погрешность приближения интеграла можно оценить по разности формул разных порядков в одной строке, т.е.

Метод треугольников и трапеций

Применение экстраполяции Ричардсона вместе с интегрированием методом трапеций называется методом Ромберга. Если метод Симпсона учитывает два предыдущих значения по методу трапеций, то метод Ромберга использует все ранее вычисленные методом трапеций значения для получения более точной оценки интеграла.

Дополнительный метод добавляется в класс Quadrature

Проверим, как работает аппроксимация высокого порядка:

Убеждаемся, что, по сравнению с методом парабол, число вызовов подынтегральной функции снизилось ещё в 8 раз. При дальнейшем увеличении требуемой точности преимущества метода Ромберга проявляются ещё заметнее:
Метод треугольников и трапеций

Некоторые замечания

Замечание 1. Количество вызовов функции в этих задачах характеризует число суммирований при вычислении интеграла. Уменьшение числа вычислений подынтегрального выражения не только экономит вычислительные ресурсы (хотя при более оптимизированной реализации и это тоже), но и уменьшает влияние погрешностей округления на результат. Так, при попытке вычислить интеграл тестовой функции метод трапеций зависает при попытке достигнуть относительной точности 5×10 -15 , метод парабол — при желаемой точности 2×10 -16 (что является пределом для чисел в двойной точности), а метод Ромберга справляется с вычислением тестового интеграла вплоть до машинной точности (с ошибкой в младшем бите). То есть, повышается не только точность интегрирования при заданном числе вызовов функции, но и предельно достижимая точность вычисления интеграла.

Замечание 2. Если метод сходится при задании некоторой точности, это не означает, что вычисленное значение интеграла имеет ту же самую точность. В первую очередь, это относится к случаям, когда задаваемая погрешность близка к машинной точности.

Замечание 3. Хотя метод Ромберга для ряда функций работает почти магическим образом, он предполагает наличие у подынтегральной функции ограниченных производных высоких порядков. Это значит, что для функций с изломами или разрывами он может оказаться хуже простых методов. Например, проинтегрируем f(x)=|x|:

Замечание 4. Может показаться, что чем выше порядок аппроксимации, тем лучше. На самом деле, лучше ограничить число столбцов таблицы Ромберга на уровне 4-6. Чтобы понять это, посмотрим на формулу (6). Второе слагаемое представляет собой разность двух последовательных элементов j-1-го столбца, поделенную на примерно 4 j . Т.к. в j-1-м столбце находятся аппроксимации интеграла порядка 2j, то сама разность имеет порядок (1/ni) 2j

4 —ij . C учётом деления получается

7 второе слагаемое в (6) теряет точность после приведения порядков при сложении чисел с плавающей точкой, и повышение порядка аппроксимации может вести к накоплению ошибки округления.

Замечание 5. Желающие могут ради интереса применить описанные методы для нахождения интеграла Метод треугольников и трапецийи эквивалентного ему Метод треугольников и трапеций. Как говорится, почувствуйте разницу.

Заключение

Представлено описание и реализация базовых методов численного интегрирования функций на равномерной сетке. Продемонстрировано, как с помощью несложной модификации получить на базе метода трапеций класс квадратурных формул по методу Ромберга, что значительно ускоряет сходимость численного интегрирования. Метод хорошо работает для интегрирования «обычных» функций, т.е. слабо меняющихся на отрезке интегрирования, не имеющих особенностей на краях отрезка (см. Замечание 5), быстрых осцилляций и т.д.

Продвинутые методы численного интегрирования для более сложных случаев можно найти в книгах из списка литературы (в [3] — с примерами реализации на C++).

Видео:Метод трапецийСкачать

Метод трапеций

Метод трапеций

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Видео:Метод трапеций при вычислении определенного интегралаСкачать

Метод трапеций при вычислении определенного интеграла

Метод трапеций

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f ( x ) d x , подынтегральная функция которого y = f ( x ) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 x 1 x 2 . . . x n — 1 x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b — a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i — 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Метод треугольников и трапеций

Выделим отрезки x i — 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f ( x ) отрезком прямой, который проходит через точки с координатами x i — 1 ; f x i — 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Метод треугольников и трапеций

Возьмем выражение f ( x i — 1 ) + f ( x i ) 2 · h в качестве приближенного значения интеграла ∫ x i — 1 x i f ( x ) d x . Т.е. примем ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f ( x i — 1 ) , f ( x i ) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i — 1 x f ( x ) d x приближенно равен площади трапеции с основаниями — f ( x i — 1 ) , — f ( x i ) и высотой h , которую необходимо взять со знаком « — ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i — 1 x i f ( x ) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Метод треугольников и трапеций

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f ( x ) d x в виде суммы интегралов вида ∫ x i — 1 x i f ( x ) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Видео:Метод прямоугольников для нахождения определенного интегралаСкачать

Метод прямоугольников для нахождения определенного интеграла

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i — 1 x i f ( x ) d x подставить их приближенные значения: ∫ x i — 1 x i f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x ≈ ∑ i = 1 n f ( x i — 1 ) + f ( x i ) 2 · h = = h 2 · ( f ( x 0 ) + f ( x 1 ) + f ( x 1 ) + f ( x 2 ) + f ( x 2 ) + f ( x 3 ) + . . . + f ( x n ) ) = = h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n ) ⇒ ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Формула метода трапеций: ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Видео:3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)Скачать

3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) · n · h 3 12 = m a x x ∈ [ a ; b ] f » ( x ) · b — a 3 12 n 2

Видео:Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++Скачать

Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++

Графическая иллюстрация метода трапеций

Графическая иллюстрация метода трапеций приведена на рисунке:

Метод треугольников и трапеций

Видео:Метод трапецийСкачать

Метод трапеций

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g ( x ) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b — a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f ( x ) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b — a n = 5 — 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0 : x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f ( x 0 ) = f ( 0 ) = 7 0 2 + 1 = 7 i = 1 : x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f ( x 1 ) = f ( 0 . 5 ) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10 : x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f ( x 10 ) = f ( 5 ) = 7 5 2 + 1 ≈ 0 , 2692

Внесем результаты вычислений в таблицу:

i012345678910
x i00 . 511 , 522 , 533 , 544 , 55
f ( x i )75 , 63 , 52 , 15381 , 40 , 96550 , 70 , 52830 , 41170 , 32940 , 2692

Подставим полученные значения в формулу метода трапеций: ∫ 0 5 7 d x x 2 + 1 ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n ) = = 0 , 5 2 · 7 + 2 · 5 , 6 + 3 , 5 + 2 , 1538 + 1 , 4 + 0 , 9655 + 0 , 7 + 0 , 5283 + 0 , 4117 + 0 , 3294 + 0 , 2692 = 9 , 6117

Сравним наши результаты с результатами, вычисленными по формуле Ньютона-Лейбница. Полученные значения совпадают до сотых.

Ответ: ∫ 0 5 7 d x x 2 + 1 = 9 , 6117

Вычислим по методу трапеций значение определенного интеграла ∫ 1 2 1 12 x 4 + 1 3 x — 1 60 d x с точностью до 0 , 01 .

Решение

Согласно условию задачи a = 1 ; b = 2 , f ( x ) = 1 12 x 4 + 1 3 x — 1 60 ; δ n ≤ 0 , 01 .

Найдем n , которое равно количеству точек разбиения отрезка интегрирования, с помощью неравенства для оценки абсолютной погрешности δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) · ( b — a ) 3 12 n 2 . Сделаем мы это следующим образом: мы найдем значения n , для которых будет выполняться неравенство m a x x ∈ [ a ; b ] f » ( x ) · ( b — a ) 3 12 n 2 ≤ 0 , 01 . При данных n формула трапеций даст нам приближенное значение определенного интеграла с заданной точностью.

Для начала найдем наибольшее значение модуля второй производной функции на отрезке [ 1 ; 2 ] .

f ‘ ( x ) = 1 12 x 4 + 1 3 x — 1 60 ‘ = 1 3 x 3 + 1 3 ⇒ f » ( x ) = 1 3 x 3 + 1 3 ‘ = x 2

Вторая производная функция является квадратичной параболой f » ( x ) = x 2 . Из ее свойств мы знаем, что она положительная и возрастает на отрезке [ 1 ; 2 ] . В связи с этим m a x x ∈ [ a ; b ] f » ( x ) = f » ( 2 ) = 2 2 = 4 .

В приведенном примере процесс нахождения m a x x ∈ [ a ; b ] f » ( x ) оказался достаточно простым. В сложных случаях для проведения вычислений можно обратиться к наибольшим и наименьшим значениям функции. После рассмотрения данного примера мы приведем альтернативный метод нахождения m a x x ∈ [ a ; b ] f » ( x ) .

Подставим полученное значение в неравенство m a x x ∈ [ a ; b ] f » ( x ) · ( b — a ) 3 12 n 2 ≤ 0 , 01

4 · ( 2 — 1 ) 3 12 n 2 ≤ 0 , 01 ⇒ n 2 ≥ 100 3 ⇒ n ≥ 5 , 7735

Количество элементарных интервалов, на которые разбивается отрезок интегрирования n является натуральным числом. Для поведения вычислений возьмем n равное шести. Такое значение n позволит нам достичь заданной точности метода трапеций при минимуме расчетов.

Вычислим шаг: h = b — a n = 2 — 1 6 = 1 6 .

Найдем узлы x i = a + i · h , i = 1 , 0 , . . . , n , определим значения подынтегральной функции в этих узлах:

i = 0 : x 0 = 1 + 0 · 1 6 = 1 ⇒ f ( x 0 ) = f ( 1 ) = 1 12 · 1 4 + 1 3 · 1 — 1 60 = 0 , 4 i = 1 : x 1 = 1 + 1 · 1 6 = 7 6 ⇒ f ( x 1 ) = f 7 6 = 1 12 · 7 6 4 + 1 3 · 7 6 — 1 60 ≈ 0 , 5266 . . . i = 6 : x 10 = 1 + 6 · 1 6 = 2 ⇒ f ( x 6 ) = f ( 2 ) = 1 12 · 2 4 + 1 3 · 2 — 1 60 ≈ 1 , 9833

Результаты вычислений запишем в виде таблицы:

i0123456
x i17 64 33 25 311 62
f x i0 , 40 , 52660 , 69110 , 90521 , 18191 , 53591 , 9833

Подставим полученные результаты в формулу трапеций:

∫ 1 2 1 12 x 4 + 1 3 x — 1 60 d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n ) = = 1 12 · 0 , 4 + 2 · 0 , 5266 + 0 , 6911 + 0 , 9052 + 1 , 1819 + 1 , 5359 + 1 , 9833 ≈ 1 , 0054

Для проведения сравнения вычислим исходный интеграл по формуле Ньютона-Лейбница:

∫ 1 2 1 12 x 4 + 1 3 x — 1 60 d x = x 5 60 + x 2 6 — x 60 1 2 = 1

Как видим, полученной точности вычислений мы достигли.

Ответ: ∫ 1 2 1 12 x 4 + 1 3 x — 1 60 d x ≈ 1 , 0054

Для подынтегральных функций сложного вида нахождение числа n из неравенства для оценки абсолютной погрешности не всегда просто. В этом случае будет уместен следующий метод.

Обозначим приближенное значение определенного интеграла, которое было получено по методу трапеций для n узлов, как I n . Выберем произвольное число n . По формуле метода трапеций вычислим исходный интеграл при одинарном ( n = 10 ) и удвоенном ( n = 20 ) числе узлов и найдем абсолютную величину разности двух полученных приближенных значений I 20 — I 10 .

Если абсолютная величина разности двух полученных приближенных значений меньше требуемой точности I 20 — I 10 δ n , то мы прекращаем вычисления и выбираем значение I 20 , которое можно округлить до требуемого порядка точности.

Если абсолютная величина разности двух полученных приближенных значений больше требуемой точности, то необходимо повторить действия с удвоенным количеством узлов ( n = 40 ) .

Такой метод требует проведения большого объема вычислений, поэтому разумно использовать вычислительную технику для экономии времени.

Решим с помощью приведенного выше алгоритма задачу. С целью экономии времени опустим промежуточные вычисления по методу трапеций.

Необходимо вычислить определенный интеграл ∫ 0 2 x e x d x по методу трапеций с точностью до 0 , 001 .

Решение

Возьмем n равное 10 и 20 . По формуле трапеций получим I 10 = 8 , 4595380 , I 20 = 8 , 4066906 .

I 20 — I 10 = 8 , 4066906 — 8 , 4595380 = 0 , 0528474 > 0 , 001 , что требует продолжения вычислений.

Возьмем n равное 40 : I 40 = 8 , 3934656 .

I 40 — I 20 = 8 , 3934656 — 8 , 4066906 = 0 , 013225 > 0 , 001 , что также требует продолжения вычислений.

Возьмем n равное 80 : I 80 = 8 , 3901585 .

I 80 — I 40 = 8 , 3901585 — 8 , 3934656 = 0 , 0033071 > 0 , 001 , что требует проведения еще одного удвоения числа узлов.

Возьмем n равное 160 : I 160 = 8 , 3893317 .

I 160 — I 80 = 8 , 3893317 — 8 , 3901585 = 0 , 0008268 0 , 001

Получить приближенное значение исходного интеграла можно округлив I 160 = 8 , 3893317 до тысячных: ∫ 0 2 x e x d x ≈ 8 , 389 .

Для сравнения вычислим исходный определенный интеграл по формуле Ньютона-Лейбница: ∫ 0 2 x e x d x = e x · ( x — 1 ) 0 2 = e 2 + 1 ≈ 8 , 3890561 . Требуемая точность достигнута.

Ответ: ∫ 0 2 x e x d x ≈ 8 , 389

Видео:3.2 Численное интегрирование (лекция)Скачать

3.2 Численное интегрирование (лекция)

Погрешности

Промежуточные вычисления для определения значения определенного интеграла проводят в большинстве своем приближенно. Это значит, что при увеличении n начинает накапливаться вычислительная погрешность.

Сравним оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников:

δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) n · h 3 12 = m a x x ∈ [ a ; b ] f » ( x ) · b — a 3 12 n 2 δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) n · h 3 24 = m a x x ∈ [ a ; b ] f » ( x ) · b — a 3 24 n 2 .

Метод прямоугольников для заданного n при одинаковом объеме вычислительной работы дает вдвое меньшую погрешность. Это делает метод более предпочтительным в тех случаях, когда известны значения функции в средних отрезках элементарных отрезков.

В тех случаях, когда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах, мы можем использовать метод трапеций.

Если сравнивать точность метода трапеций и метода правых и левых прямоугольников, то первый метод превосходит второй в точности результата.

Видео:Математика без Ху!ни. Вычисление определителя методом треугольников.Скачать

Математика без Ху!ни. Вычисление определителя методом треугольников.

Вычисление интегралов по формулам прямоугольников и трапеций. Оценка погрешности

  • Дидактическая цель. Познакомить учащихся с методами приближённого вычисления определённого интеграла.
  • Воспитательная цель. Тема данного занятия имеет большое практическое и воспитательное значение. Наиболее просто к идее численного интегрирования можно подойти, опираясь на определение определённого интеграла как предела интегральных сумм. Например, если взять какое-либо достаточно мелкое разбиение отрезка [a; b] и построить для него интегральную сумму, то её значение можно приближённо принять за значение соответствующего интеграла. При этом важно быстро и правильно производить вычисления с привлечением вычислительной техники.

Основные знания и умения. Иметь понятие о приближённых методах вычисления определённого интеграла по формулам прямоугольников и трапеций.

  • Раздаточный материал. Карточки-задания для самостоятельной работы.
  • ТСО. Мультипроектор, ПК, ноутбуки.
  • Оснащение ТСО. Презентации: “Геометрический смысл производной”, “Метод прямоугольников”, “Метод трапеций”. (Презентации можно взять у автора).
  • Вычислительные средства: ПК, микрокалькуляторы.
  • Методические рекомендации

Вид занятия. Интегрированное практическое.

Мотивация познавательной деятельности учащихся. Очень часто приходится вычислять определённые интегралы, для которых невозможно найти первообразную. В этом случае применяют приближённые методы вычисления определённых интегралов. Иногда приближённый метод применяют и для “берущихся” интегралов, если вычисление по формуле Ньютона-Лейбница не рационально. Идея приближённого вычисления интеграла заключается в том, что кривая Метод треугольников и трапецийзаменяется новой, достаточно “близкой” к ней кривой. В зависимости от выбора новой кривой можно использовать ту или иную приближённую формулу интегрирования.

  1. Формула прямоугольников.
  2. Формула трапеций.
  3. Решение упражнений.
  1. Повторение опорных знаний учащихся.

Повторить с учащимися: основные формулы интегрирования, сущность изученных методов интегрирования, геометрический смысл определённого интеграла.

Решение многих технических задач сводится к вычислению определённых интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближённого значения.

Пусть, например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно. В этом случае можно заменить данную линию более простой, уравнение которой известно. Площадь полученной таким образом криволинейной трапеции принимается за приближённое значение искомого интеграла.

Простейшим приближённым методом является метод прямоугольников. Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD заменяется суммой площадей прямоугольников, одна сторона которых равна Метод треугольников и трапеций, а друга — Метод треугольников и трапеций.

Если суммировать площади прямоугольников, которые показывают площадь криволинейной трапеции с недостатком [Рисунок1], то получим формулу:

Метод треугольников и трапеций

Метод треугольников и трапеций

то получим формулу: Метод треугольников и трапеций

Если с избытком

Метод треугольников и трапеций

Метод треугольников и трапеций

то Метод треугольников и трапеций

Значения у0, у1. уn находят из равенств Метод треугольников и трапеций, к = 0, 1. n .Эти формулы называются формулами прямоугольников и дают приближённый результат. С увеличением n результат становится более точным.

Итак, чтобы найти приближённое значение интеграла Метод треугольников и трапеций, нужно:

  • разделить отрезок интегрирования [a, b] на n равных частей точками х0= а, х1, х2. х n -1, х n = b ;
  • вычислить значения подынтегральной функции Метод треугольников и трапецийв точках деления, т.е. найти у 0 =f (x0), у 1 =f (x1), у 2 =f (x2), у n -1 =f (xn-1), у n =f (xn) ;
  • воспользоваться одной из приближённых формул.

Для того, чтобы найти погрешность вычислений, надо воспользоваться формулами:

Метод треугольников и трапеций
Метод треугольников и трапеций

Пример 1. Вычислить по формуле прямоугольников Метод треугольников и трапеций. Найти абсолютную и относительную погрешности вычислений.

Разобьём отрезок [a, b] на несколько (например, на 6) равных частей. Тогда а = 0, b = 3 , Метод треугольников и трапеций

х k = a + k Метод треугольников и трапеций Метод треугольников и трапецийх
х
0 = 2 + 0 Метод треугольников и трапеций Метод треугольников и трапеций= 2
х1 = 2 + 1 Метод треугольников и трапеций Метод треугольников и трапеций= 2,5
х2 = 2 + 2 Метод треугольников и трапеций Метод треугольников и трапеций=3
х3 = 2 + 3 Метод треугольников и трапеций Метод треугольников и трапеций= 3
х4 = 2 + 4 Метод треугольников и трапеций Метод треугольников и трапеций= 4
х5 = 2 + 5 Метод треугольников и трапеций Метод треугольников и трапеций= 4,5

х22,533,544,5
у46,25912,251620,25

Метод треугольников и трапеций

Для того, чтобы вычислить относительную погрешность вычислений, надо найти точное значение интеграла:

Метод треугольников и трапеций
Метод треугольников и трапеций
Метод треугольников и трапеций

Вычисления проходили долго и мы получили довольно-таки грубое округление. Чтобы вычислить этот интеграл с меньшим приближением, можно воспользоваться техническими возможностями компьютера.

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х Метод треугольников и трапеций[2 ;5 ] с заданным шагом Метод треугольников и трапецийх = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (2). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (2,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А32, до значения х=5).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2 и с клавиатуры ввести формулу =А2^2 (при английской раскладке клавиатуры). Нажимаем клавишу Enter. В ячейке В2 появляется 4. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В32.
    В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В33 может быть найдено приближённое значение интеграла. Для этого в ячейку В33 вводим формулу = 0,1*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В31. Нажимаем кнопку ОК. В ячейке В33 появляется приближённое значение искомого интеграла с недостатком (37,955) .

Сравнивая полученное приближённое значение с истинным значением интеграла (39), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод треугольников и трапеций= |39 — 37 , 955| = 1 ,045
Метод треугольников и трапеций

Пример 2. Используя метод прямоугольников, вычислить Метод треугольников и трапецийс заданным шагом Метод треугольников и трапецийх = 0,05.

  1. Для нахождения определённого интеграла значения подынтегральной функции f(x) должны быть введены в рабочую таблицу Excel в диапазоне Метод треугольников и трапецийс заданным шагом Метод треугольников и трапецийх = 0,05. В созданную уже таблицу данных в ячейку А2 вводится левая граница интегрирования (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,05). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=1,55).
  2. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение косинуса, соответствующее значению аргумента в ячейке А2. Для получения значения косинуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции ( fх ) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию COS. Нажимаем кнопку ОК. Появляется диалоговое окно COS. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента косинуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 1. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  3. Теперь в ячейке В34 может быть найдено приближённое значение интеграла. Для этого в ячейку В34 вводим формулу = 0,05*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции ( ( fх )) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В32. Нажимаем кнопку ОК. В ячейке В34 появляется приближённое значение искомого интеграла с избытком (1,024056).

Сравнивая полученное приближённое значение с истинным значением интеграла Метод треугольников и трапеций, можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод треугольников и трапеций
Метод треугольников и трапеций

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников. Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций

Метод треугольников и трапеций

Метод треугольников и трапеций

Метод треугольников и трапеций

Пример 3. Методом трапеций найти Метод треугольников и трапецийс шагом Метод треугольников и трапецийх = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=3,1).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение (в примере синуса). Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение синуса, соответствующее значению аргумента в ячейке А2. Для получения значения синуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции f(x). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию SIN. Нажимаем кнопку ОК. Появляется диалоговое окно SIN. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента синуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В34 может быть найдено приближённое значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу = 0,1*((В2+В33)/2+, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В3:В32. Нажимаем кнопку ОК и ещё раз ОК. В ячейке В34 появляется приближённое значение искомого интеграла с недостатком (1,997) .

Сравнивая полученное приближённое значение с истинным значением интеграла Метод треугольников и трапецийможно видеть, что ошибка приближения метода прямоугольников в данном случае вполне приемлемая для практики.

Метод треугольников и трапеций
Метод треугольников и трапеций

  1. Решение упражнений.
  1. Вычислить Метод треугольников и трапецийметодом прямоугольников, разделив отрезок [0;1] на 20 равных частей.
    Метод треугольников и трапеций
  2. Вычислить методом трапеций Метод треугольников и трапеций
  3. Вычислить методом трапеций Метод треугольников и трапеций
  4. Вычислить методом трапеций Метод треугольников и трапеций
  5. Вычислить Метод треугольников и трапецийразделив отрезок [0;4] на 40 равных частей.
  6. Вычислить Метод треугольников и трапецийразделив отрезок [0;8] на 40 равных частей.
  7. Вычислить Метод треугольников и трапеций

🔥 Видео

Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Формула СимпсонаСкачать

Формула Симпсона

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Метод левых, правых и средних прямоугольниковСкачать

Метод левых, правых и  средних прямоугольников

СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Геометрия 8 класс (Урок№4 - Трапеция)Скачать

Геометрия 8 класс (Урок№4 - Трапеция)

Как выразить площадь трапеции через площади треугольников, ограниченных диагоналями и основаниями?Скачать

Как выразить площадь трапеции через площади треугольников, ограниченных диагоналями и основаниями?

Численные методы решения интегралов в MS ExcelСкачать

Численные методы решения интегралов в  MS Excel

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе: