Метод треугольника в геодезии

Триангуляция — построение, метод и сущность

Известно, что триангуляция как геодезический термин означает способ создания геодезических сетей. Да, это так. Но следует начать с другого.

Изначально с возникновением потребности человека в познании, обычное мышление приводит его к накоплению определенного багажа знаний. С развитием научного мышления все эти знания систематизируются, в том числе разъясняются на основе фактов, явлений и доказательств. Применяя теоретические предположения на практике, возникают своего рода критерии истины. То есть имеют ли подтверждения практическим путем все те предположения, которые с помощью определенных способов дают конкретный результат. Пожалуй, одним из таких научных методов, решающих задачу по высокоточному измерению больших расстояний между пунктами на земной поверхности с построением примыкающих друг к другу треугольников и измерений внутри них стал способ триангуляции.

Первым кто изобрел и применил метод триангуляции (1614-1616), был великий голландский ученый Виллеброрд Снелл (Снеллиус). В те годы уже были предположения о том, что Земля является планетой в космическом пространстве и имеет форму сферы (из космологии Джордано Бруно 1548-1600). Установление точных размеров планеты имело большое практическое значение по ее освоению в дальнейшем. Вот для этого в Нидерландах через постройку ряда треугольников были впервые выполнены градусные измерения дуги меридиана способом триангуляции. Что имеется ввиду. Выполнив измерения между жесткими геодезическими пунктами с разностью широт между ними в один градус (у Снеллиуса 1º11´30″) способом триангуляции и получив конкретное расстояние дуги, голландский математик обычным расчетом мог получить длину всей окружности меридиана. Очевидно, что вычислить радиус Земли, приняв ее фигуру за форму шара (эллипса), оставалось делом техники.

В завершение исторического экскурса можно выделить взаимосвязанность и выборность научных познаний для будущего практического применения человеком. И не удивительно, что изобретение способа триангуляции произошло именно в Нидерландах, которые на тот момент считались ведущей морской державой с потребностью новых познаний в навигации, географии, астрономии и конечно геодезии.

Видео:Построение натуральной величины треугольника АВС методом триангуляцииСкачать

Построение натуральной величины треугольника АВС методом триангуляции

Сущность метода

Триангуляция заключается в определении пространственного местоположения специально закрепленных на местности геодезических пунктов в вершинах целого ряда треугольников. Изначально, с высокой степенью точности (до долей секунд) определяют азимуты исходных направлений ab, ba, mn, nm (рис.1.Триангуляционный ряд треугольников по меридиану). Следующим этапом будет определение астрономических координат (широты и долготы) в пунктах измерений азимутов двух исходных базисов. В каждой паре жестких сторон (ab, mn) координаты измеряются только в одной точке, например a, m (рис.1). При этом следует обратить особое внимание на определение астрономических широт в ряду треугольников, расположенных по направлению меридианов. При измерениях в треугольниках, сформированных вдоль параллелей, необходимо уделить должное внимание определению астрономических долгот. Далее производят измерения длин двух базисных сторон (ab, mn). Эти стороны имеют сравнительно не большие длины (порядка 8-10 км). Поэтому их измерения более экономичные и точные относительно сторон cd, tq, составляющих расстояния от 30 до 40 км. В следующую очередь выполняется переход от базисов ab, mn через угловые измерения в ромбах abcd и mntq к сторонам cd, tq. А затем последовательно практически в каждой вершине треугольников cde, def, efg и других измеряются горизонтальные углы до примыкания к следующей основной стороне tq всего ряда треугольников. Через измеренные углы треугольника с измеренной базисной или вычисленной основной стороной последовательно вычисляются все другие стороны, их азимуты и координаты вершин треугольников.

Рис.1. Триангуляционный ряд треугольников по меридиану.

Видео:Геодезия Специального Назначения. Урок1. ТреугольникиСкачать

Геодезия Специального Назначения. Урок1. Треугольники

Триангуляционные сети

После первого применения градусного измерения дуги Снеллиусом триангуляционный метод становится основным способом в геодезических высокоточных измерениях. С XIX века, когда триангуляционные работы стали более совершенными с его помощью стали формироваться целые геодезические сети, строящиеся вдоль параллелей и меридианов. Самая знаменитая из всех известна под наименованием геодезической меридианной дуги Струве и Теннера (1816-1852) в последствие зачислена в мировое наследие по ЮНЕСКО. Ее триангуляционный ряд протянулся по Норвегии, Швеции, Финляндии и России от Северного Ледовитого океана до Черного моря в устье Дуная и составил дугу в 25º20´(рис.2).

За основу геодезических сетей триангуляции в нашей стране принята схема профессора Ф.Н.Красовского (рис.3). Ее суть заключается в применении принципа построений от общего к частному. Изначально закладываются вдоль меридианов и параллелей пункты, образующие ряды треугольников протяженностью в пределах 200-240 км. Длины сторон в самих треугольниках составляют 25-40км. Все астрономические измерения азимутов, координат (широт и долгот) выходных точек на пунктах Лапласа (1) и промежуточных астрономических точках (2), высокоточные базисные (3) геодезические измерения и в каждой точке этой цепи должно соответствовать установленным требованиям I класса точности (рис.3). Замкнутый полигон из четырех триангуляционных рядов представляет собой фигуру, напоминающую квадрат с периметром равным ориентировочно около 800 км. Через центральные части первоклассных рядов триангуляции устраиваются в направлении друг к другу основные ряды триангуляционной сети II класса (рис.3) соответствующей точности. Базисные длины сторон в этих рядах не измеряются, а принимаются базисы со сторон триангуляции I класса. Аналогично отсутствуют и астрономические пункты. Возникшие четыре пространства заполняются сплошными триангуляционными сетями и II, и III классов.

Рис.3.Государственные сети триангуляции.

Безусловно описанная схема развития сетей триангуляции по Красовскому не может закрыть всю территорию страны ввиду понятных причин больших лесных и не заселенных территорий страны. Поэтому с запада на восток вдоль параллелей были проложены отдельные ряды первоклассной триангуляции и полигонометрии, а не сплошная триангуляционная сеть.

Видео:Построение натуральной величины треугольника методом вращенияСкачать

Построение натуральной величины треугольника методом вращения

Достоинства триангуляции

В развитии геодезической науки и ее практического применения очевидны достоинства триангуляционного способа измерений. С помощью этого универсального метода возможно:

  • определение положения геодезических точек на значительно удаленных расстояниях;
  • выполнение основных работ по строительству геодезических сетей на всей территории страны;
  • обеспечение основой всех топографических съемок;
  • выстраивание через основные геодезические работы различных систем координат;
  • производство инженерных и изыскательских работ;
  • периодическое определение размеров Земли;
  • изучение перемещений земной поверхности.

Видео:Триангуляция выпуклых и невыпуклых многоугольниковСкачать

Триангуляция выпуклых и невыпуклых многоугольников

Планирование экспедиции. Геодезия и отвага

Это продолжение истории Экваториальной Градусной экспедиции в XVIII веке отправившейся к, как следует из названия, экватору, чтобы уточнить форму Земли.

Нашу научную экспедицию к берегам Перу мы оставили в том месте, где морской министр Франции, выделивший государственный бюджет на проект, пришел в ужас от кадровой политики ученых и сам занялся подбором персонала, выделением кредитов и денег, а также дипломатической перепиской с испанским двором. Луи Годену, как идеологу, оставалось лишь позаботиться о плане работ и инструментах.

Планирование работ

Планирование работ происходило в публичном пространстве кофеен и трактиров, широко обсуждалось в уже упомянутом нами Градо и в личной переписке всей ученой братии. Над чашками и бокалами разворачивались карты (довольно устаревшие) и шли ожесточенные споры.

Луи Годен, руководитель, ослепленный легким успехом, заявляет о том, что лучше измерить длину не 1 градуса меридиана (около 111 км), а целых четырех. Определенный смысл в этом действительно есть: чем большее расстояние мы измеряем, тем больше мы в безопасности от влияния случайных погрешностей. Но четыре градуса! Почти четыре с половиной сотни километров в малоизученном высокогорье, на которое и карт-то толком нет!

Метод треугольника в геодезииКрасным помечена предлагаемая к измерению дуга меридиана.

В чем заключалась задача экспедиции? Требовалось измерить длину дуги меридиана в 1 градус на экваторе и сравнить, на сколько туазов (это местная мера длины) она отличается от 1 градуса Парижского меридиана.

На злобу дня в Академию пришло едкое письмо из России, где в самом вежливом тоне Жозеф Делилль, создатель Санкт-Петербургской обсерватории, предложил коллеге не мелочиться и, чего уж, измерить дугу меридиана до самой Огненной Земли. Чтобы дважды не ходить. Впрочем, Делилль имел право быть сколько угодно резким: Годен был его учеником.

Метод треугольника в геодезии«Осип Николаевич» Делилль (отец российской астрономии), гравюра Конрада Вестрмайра, Википедия).

Маленькая историческая справка

В 1735 году, о котором мы говорим, в России царствовала Анна Иоанновна, племянница Петра I: Екатерина I уже умерла, а ее дочь Елизавета еще не захватила престол. Кстати, если вы окажетесь в Москве, сходите поглядеть на Царь-колокол. Когда Луи Годен готовил свою экспедицию, Царь-колокол отливали в Кремле в специально подготовленной яме. А в Академии Наук Петербурга за астрономию отвечал Жозеф Николя Делилль, приглашенный из Парижа еще Петром I.

Делилль совершенно легендарный дядька. Учился он у Джованни Кассини, итальянца, стоявшего во главе первой обсерватории Парижа. Потом уехал в Россию делать обсерваторию в Петербурге. Тогда она размещалась в здании Кунсткамеры. Он закупил приборы, написал план обучения молодых астрономов, организовал регулярные метеоизмерения, предложил основать службу времени. Кстати, в Кунсткамере в экспозиции «Первая обсерватория» демонстируются те самые заказанные им инструменты. По предложению Делилля, при Академии Наук был создан Географический департамент для руководства картографированием. Страна большая, карты на эту огромную территорию надо создавать, а существующие — обновлять. Более того, Делилль придумал коническую проекцию, как раз для нашей территории подходящую.

Про проекции хочу немного пояснить

Помните старую шутку:

Никто не сделал больше для величия России, чем проекция Меркатора.

Судя по общественному резонансу, слишком многие приняли изящный юмор за чистую монету. Дело в том, что нельзя просто так взять и перенести (земной) шар (мы же еще про XVIII век) на плоскость.

Метод треугольника в геодезииЦилиндрическая проекция Меркатора из https://gisgeography.com/cylindrical-projection/

Выше картинка цилиндрической проекции Меркатора Проекция — это математический способ перенести изображение с земного шара на плоскую карту с контролируемым искажением углов и расстояний. Идея проста: земной шар мы оборачиваем бумажным цилиндром, и в месте соприкосновения (это может быть экватор, как на картинке, или меридиан) длина линии (например, дороги) на шаре будет равна длине линии на бумаге. Чем дальше от места касания — тем больше при переносе на бумагу будут искажены длины линий. Поперечная проекция Меркатора (когда цилиндр касается Земного шара по меридиану) — сегодня самая популярная из проекций.

Россия, однако, далеко от экватора и вытянута с востока на запад. Получаются сплошные искажения. Поэтому Делилль в своем XVIII веке придумал специальный подвид конической проекции.

Метод треугольника в геодезииКоническая проекция из «В.Н. Попов, С.И. Чекалин. Геодезия: Учебник для вузов.- М.: «Горная книга», 2007.»

Тут земной шар оборачивается конусом, а значит «соприкосновение» бумаги с шаром идет по параллели. Профит: меньше искажений на нашу большую территорию.

Почему Делилль молодец и про проекции надо помнить? Во-первых, до конца ХХ века по бумажным картам выполняли измерения: определяли длины и площади. И подготовка любого путешествия велась по картам. Не учел искажение — не заложил денег и провианта — погиб в пути. Сейчас проекции тоже существуют, хотя обычный пользователь редко сталкивается с ними напрямую. А вот косвенно — еще как. Дело в том, что координаты, которые измеряет GPS-приемник (при обмере приусадебного участка, для постановки на учет, например) — пространственные и относятся к тому самому Земному шару (на самом деле, эллипсоиду). А координаты, которые фигурируют в документах на собственность — плоские. Относящиеся к поперечно цилиндрической проекции шара на плоскость. И, чтобы пересчитать одно в другое, надо не только помнить о том, что пересчет необходим, но и помнить, с какой точностью выведены те формулы, которые заложены в программу пересчета.

Кстати, Делилль тоже пытался заниматься градусными измерениями: года через два после Луи Годена. Но ему сократили финансирование, поскольку для нашей страны эта сугубо научная (как тогда казалось) задача не была первостепенной. Увы, карьера ученого в Петербурге завершилась бесславно. Он оказался замешан в шпионском скандале (то ли правда было за что, а то ли политическая борьба за место директора обсерватории) и вернулся в Париж к 1747 году. Зато в России весь XVIII век для измерения температуры использовали градусы Делилля. Но вернемся к основному повествованию.

Как измерить длину дуги меридиана?

Что именно собирались делать ученые, когда доберутся до тайного города Кито, что в Перу? Помните, мы уже говорили об Эратосфене и градусных измерениях? Градусные измерения — это когда между двумя точками, расположенными на одном меридиане, измеряют расстояние и разность широт.

Метод треугольника в геодезииГрадусные измерения Эратосфена: известно расстояние L в линейной мере и градусной: разность широт между точками.

Про измерение расстояния: к XVIII веку (и, кстати, до конца века двадцатого) для этой цели применялся метод триангуляции. Как следует из названия — она имеет отношение к треугольникам.

Как триангуляция появилась в геодезии?

Был такой голландский ученый, живший в XVI веке, Эратосфен Батавский (в те времена было принято брать себе хвастливые прозвища, подражая ученым древности), он же Виллеборд Снелл. Именно он использовал и популяризировал известную из математики триангуляцию для геодезических работ.

Подобно Эратосфену, Снелл тоже выполнял градусные измерения для определения радиуса Земли. Ему тоже нужно было найти длину дуги меридиана в градусах и в линейной мере (милях, к примеру). Однако караванов с погонщиками в северной Европе не было, так что расстояние пришлось определять самостоятельно.

Как устроена триангуляция?

Предположим, мы хотим найти расстояние между весьма удаленными точками (допустим удаленных на 100 километров). Просто измерить это расстояние невозможно: нет прямой видимости, нет возможности хотя бы построить прямую линию между точками (ведь одна может находиться на холме а другая на низменности, между ними могут быть реки, овраги и озера. На помощь приходит цепочка треугольников.

Метод треугольника в геодезииЭто звено триангуляции АВ

Допустим, нам нужно найти расстояние (АВ). Мы строим цепочку стыкующихся треугольников вокруг этой линии и измеряем небольшую (до 10 км) сторону треугольника A-1.

Метод треугольника в геодезииФрагмент триангуляции. А-1 — измеренная сторона (базис).

Измеренная сторона на рисунке помечена коричневым. Дальше мы угломерным прибором (квадрантом, астролябией, тахеометром) измеряем все внутренние углы треугольника 1-А-2. Получается, нам известны одна сторона и углы в треугольнике. Значит мы можем вычислить оставшиеся стороны в треугольнике. Среди прочего — мы найдем сторону А-2. И, если мы измерим все углы в треугольнике А-2-3, то сможем найти все стороны и для него тоже. Таким образом, последовательно решая стыкующиеся треугольники, для которых известны внутренние углы, мы сможем отыскать длины сторон всех треугольников.

Тут возникает нестыковка: мы можем отыскать все элементы треугольника по стороне и всего лишь двум углам. Значит, измерять все углы нет необходимости, достаточно измерить только два из трех? Теоретически это так. Однако на практике измеряют третий угол, чтобы обеспечить избыточность измерений. Как минимум — это такой простейший контроль: если сумма всех углов не будет равна 180 градусам — где-то в измерения вкралась серьезная ошибка.
Существуют статистические методы (курс ТМОГИ), позволяющие оценить погрешность, с которой были выполнены измерения и вычисления окончательной величины (расстояния), но в первой трети XVIII века, о которой я рассказываю, про все это имелись скорее смутные догадки.

Примерно по такой схеме, как описана выше, строил свои рассуждения Снелл. Он измерил расстояние от своего дома до шпиля местной церкви, а затем построил цепочку стыкующихся треугольников (триангуляции), которая позволила ему определить расстояние между городами Алкмар и Берген-оп-Зом, которые лежат на одном меридиане. Далее, зная длину дуги меридиана в линейной мере (милях) и в градусной мере — он мог вычислить радиус Земли, подобно Эратосфену (настоящему Эратосфену, Киренскому).

Метод Снелла оказался удачным, выполнимым и был взят на вооружение. Разумеется, по мере применения он совершенствовался: измерения выйдут точнее, если треугольники будут, по возможности, равносторонние или хотя бы равнобедренные. Придумали также делать дополнительный базис (измерять еще одну сторону треугольника где-то в конце цепочки) — для контроля. Эта сторона треугольника будет известна из измерений и из вычислений. Разница поможет оценить погрешность, с которой проводились работы.

Кстати, триангуляция была основным методом высокоточных геодезических измерений до самого конца XX века, пока не появились спутниковые системы позиционирования, GPS/ГЛОНАСС. Но это уже — совсем другая история.

Метод треугольника в геодезииСовременный (конец ХХ века) пункт триангуляции в Тульской области.

Вернемся к Экваториальной экспедиции 1735 года. Что именно предстояло сделать ученым?

Метод треугольника в геодезииСхема триангуляции из журнала Лакондамина.

Ученые решают разбить вдоль меридиана (с севера на юг) цепочку треугольников. Треугольники требуется делать по возможности равносторонними или хотя бы равнобедренными, на местности необходимо обеспечить видимость хотя бы на две соседние вершины. Учитывая расстояния и сложности местного рельефа, треугольников по плану двадцать семь. Длина стороны в них около 30-40 км.

Метод треугольника в геодезииНа современную карту тут наложены треугольники перуанской экспедиции (примерный экскиз)

Измерена будет сторона одного из северных треугольников (базис в районе Яруки) и еще одна сторона на юге (базис в Куэнке), для контроля результатов. К сожалению, ввиду того, что это горная цепь с ущельями, скалами, реками и провалами, удобное плато для базиса было найти трудно, поэтому его длина существенно меньше (раза в четыре), чем длины сторон основных треугольников. Базис составит около 12 км. Во всех прочих треугольниках будут измерены внутренние углы. После этого ученые последовательно вычислят длины сторон всех треугольников.

Казалось бы: как теперь из наклонных сторон треугольников получить длину меридиана? Ученые будут вычислять длину проекции каждой западной стороны треугольника на меридиан. В сумме они дадут длину дуги меридиана:

Метод треугольника в геодезииИскомую длину меридиана вычисляли по сумме проекций сторон треугольника на меридиан

Кстати, вот любопытный факт про измеряемую сторону треугольника (базис, как он называется в триангуляции):

Деллиль в России (и еще кое-то из его коллег в Швеции) считал, что удобно будет измерять базис по замерзшему льду реки или залива, поскольку он образует ровную, поверхность с идеальной видимостью. Очень крутая и новаторская по тем временам мысль. Увы, замерзающих заливов в Перу не было.

Тот план, который Годен изначально представил в Академии, касался измерений в горной долине между западной и восточной цепью Анд. Это казалось разумным: горные вершины послужат отличным ориентиром для наблюдений, а города Кито (на севере) и Куэнка (на юге), упомянутые на карте, должны иметь хоть какие-то подъездные дороги. Однако потом Годен увлекся идеей измерять не меридиан, а параллель, его коллеги вообще хотели держаться ближе к побережью, так что планирование миссии застопорилось и окончательный ответ на вопрос “а что именно мы там будем делать?” не был дан до самого отплытия из Франции.

Метод треугольника в геодезии«Удобная для измерений» горная долина Кито, Википедия.

В защиту такого подхода руководителя миссии следует сказать, что предварительная подготовка работ велась по очень приблизительным картам, самой свежей из которых было лет двадцать. Последним французом, побывавшим в Перу был Амеде Франсуа Фрезье (торговец, инженер и шпион).

Метод треугольника в геодезииКартматериалы из «Описания путешествия» Фрезье, 1712 г.

Любопытно, что широко известен он совсем не разведдеятельностью, а клубничным десертом. Именно он привез чилийскую землянику в королевскую оранжерею. И свое французское имя fraise, ананасная земляника, ее потомок, носит по его фамилии. В общем, планирование экспедиции, хотя и было занимательным, содержало слишком много белых пятен. Все станет понятно на местности. А пока следовало позаботиться об инструментах.

Видео:Определение отметок методом интерполяцииСкачать

Определение отметок методом интерполяции

ТРИАНГУЛЯ́ЦИЯ

  • В книжной версии

    Том 32. Москва, 2016, стр. 383

    Скопировать библиографическую ссылку:

    • Метод треугольника в геодезии
    • Метод треугольника в геодезии
    • Метод треугольника в геодезии
    • Метод треугольника в геодезии
    • Метод треугольника в геодезии

    ТРИАНГУЛЯ́ЦИЯ (от лат. triangulum – тре­уголь­ник), ме­тод оп­ре­де­ле­ния пла­но­вых ко­ор­ди­нат гео­де­зич. пунк­тов пу­тём по­строе­ния на ме­ст­но­сти це­пей и се­тей из тре­уголь­ни­ков, свя­зан­ных об­щей сто­ро­ной. В вер­ши­нах тре­уголь­ни­ков рас­по­ла­га­ют­ся гео­де­зи­че­ские пунк­ты , над ка­ж­дым из ко­то­рых ус­та­нав­ли­ва­ют гео­де ­зиче­ский знак с ви­зир­ным ци­лин­дром, на ко­то­рый на­во­дят уг­ло­мер­ные ин­ст­ру­мен­ты с со­сед­них зна­ков.

    📺 Видео

    Математика без Ху!ни. Вычисление определителя методом треугольников.Скачать

    Математика без Ху!ни. Вычисление определителя методом треугольников.

    Построение горизонталей на топоплане. Аналитический и графический способ. Инженерная геодезия.Скачать

    Построение горизонталей на топоплане. Аналитический и графический способ. Инженерная геодезия.

    Сдача зачета по начертательной геометрии МГСУ-МИСИСкачать

    Сдача зачета по начертательной геометрии МГСУ-МИСИ

    Системы координат в геодезии. Зональная система прямоугольных координат. Гаусса-КрюгераСкачать

    Системы координат в геодезии. Зональная система прямоугольных координат. Гаусса-Крюгера

    Урок 03. Метод проекцийСкачать

    Урок 03. Метод проекций

    Масштабы в геодезии. Поперечный, линейный, численный. Как читать и как пользоваться.Скачать

    Масштабы в геодезии. Поперечный, линейный, численный. Как читать и как пользоваться.

    Математика это не ИсламСкачать

    Математика это не Ислам

    Линейные измерения косвенным способом в геодезииСкачать

    Линейные измерения косвенным способом в геодезии

    Определение высоты точки и уклона на топографической карте (1 занятие 3.09.13 ДМ-11)Скачать

    Определение высоты точки и уклона на топографической карте (1 занятие 3.09.13 ДМ-11)

    Системы координат в геодезииСкачать

    Системы координат в геодезии

    От Фалеса к триангуляционной сетиСкачать

    От Фалеса к триангуляционной сети

    Использование геодезического метода и метода спутниковых геодезических измеренийСкачать

    Использование геодезического метода и метода спутниковых геодезических измерений

    Лекция 5 - Методы космической геодезииСкачать

    Лекция 5 - Методы космической геодезии

    Начертательная геометрия. Методы проецированияСкачать

    Начертательная геометрия. Методы проецирования
    Поделиться или сохранить к себе: