Метод левых треугольников формула

Метод прямоугольников.

Вычисление определенных интегралов по формуле Ньютона-Лейбница не всегда возможно. Многие подынтегральные функции не имеют первообразных в виде элементарных функций, поэтому мы во многих случаях не можем найти точное значение определенного интеграла по формуле Ньютона-Лейбница. С другой стороны, точное значение не всегда и нужно. На практике нам часто достаточно знать приближенное значение определенного интеграла с некоторой заданной степенью точности (например, с точностью до одной тысячной). В этих случаях нам на помощь приходят методы численного интегрирования, такие как метод прямоугольников, метод трапеций, метод Симпсона (парабол) и т.п.

В этой статье подробно разберем метод прямоугольников для приближенного вычисления определенного интеграла.

Сначала остановимся на сути этого метода численного интегрирования, выведем формулу прямоугольников и получим формулу для оценки абсолютной погрешности метода. Далее по такой же схеме рассмотрим модификации метода прямоугольников, такие как метод правых прямоугольников и метод левых прямоугольников. В заключении рассмотрим подробное решение характерных примеров и задач с необходимыми пояснениями.

Навигация по странице.

Видео:Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++Скачать

Численное интегрирование: Методы Левых Правых прямоугольников, Трапеций, Симпсона c++

Суть метода прямоугольников.

Пусть функция y = f(x) непрерывна на отрезке [a; b] . Нам требуется вычислить определенный интеграл Метод левых треугольников формула.

Обратимся к понятию определенного интеграла. Разобьем отрезок [a;b] на n частей Метод левых треугольников формулаточками Метод левых треугольников формула. Внутри каждого отрезка Метод левых треугольников формулавыберем точку Метод левых треугольников формула. Так как по определению определенный интеграл есть предел интегральных сумм при бесконечном уменьшении длины элементарного отрезка разбиения Метод левых треугольников формула, то любая из интегральных сумм является приближенным значением интеграла Метод левых треугольников формула.

Суть метода прямоугольников заключается в том, что в качестве приближенного значения определенного интеграла берут интегральную сумму (далее мы покажем, какую именно интегральную сумму берут в методе прямоугольников).

Видео:Метод прямоугольников для нахождения определенного интегралаСкачать

Метод прямоугольников для нахождения определенного интеграла

Метод средних прямоугольников.

Формула метода средних прямоугольников.

Если отрезок интегрирования [a;b] разбить на РАВНЫЕ части длины h точками Метод левых треугольников формула(то есть Метод левых треугольников формула) и в качестве точек Метод левых треугольников формулавыбрать СЕРЕДИНЫ элементарных отрезков Метод левых треугольников формула(то есть Метод левых треугольников формула), то приближенное равенство Метод левых треугольников формуламожно записать в виде Метод левых треугольников формула. Это и есть формула метода прямоугольников. Ее еще называют формулой средних прямоугольников из-за способа выбора точек Метод левых треугольников формула.

Метод левых треугольников формуланазывают шагом разбиения отрезка [a;b] .

Приведем графическую иллюстрацию метода средних прямоугольников.

Метод левых треугольников формула

Из чертежа видно, что подынтегральная функция y=f(x) приближается кусочной ступенчатой функцией Метод левых треугольников формулана отрезке интегрирования.

С геометрической точки зрения для неотрицательной функции y=f(x) на отрезке [a;b] точное значение определенного интеграла представляет собой площадь криволинейной трапеции, а приближенное значение по методу прямоугольников – площадь ступенчатой фигуры.

Метод левых треугольников формула

Оценка абсолютной погрешности метода средних прямоугольников.

Перейдем к оценке абсолютной погрешности метода прямоугольников. Сначала оценим погрешность на элементарном интервале. Погрешность метода прямоугольников в целом будет равна сумме абсолютных погрешностей на каждом элементарном интервале.

На каждом отрезке Метод левых треугольников формулаимеем приближенное равенство Метод левых треугольников формула. Абсолютную погрешность метода прямоугольников Метод левых треугольников формулана i -ом отрезке вычисляем как разность между точным и приближенным значением определенного интеграла: Метод левых треугольников формула. Так как Метод левых треугольников формулаесть некоторое число и Метод левых треугольников формула, то выражение Метод левых треугольников формулав силу четвертого свойства определенного интеграла можно записать как Метод левых треугольников формула. Тогда абсолютная погрешность формулы прямоугольников на i -ом элементарном отрезке будет иметь следующий вид
Метод левых треугольников формула

Если считать, что функция y = f(x) имеет в точке Метод левых треугольников формулаи некоторой ее окрестности производные до второго порядка включительно, то функцию y = f(x) можно разложить в ряд Тейлора по степеням Метод левых треугольников формулас остаточным членом в форме Лагранжа:
Метод левых треугольников формула

По свойствам определенного интеграла равенства можно интегрировать почленно:
Метод левых треугольников формула
где Метод левых треугольников формула.

Таким образом, Метод левых треугольников формулаи Метод левых треугольников формула.

Абсолютная погрешность формулы прямоугольников на отрезке [a; b] равна сумме погрешностей на каждом элементарном интервале, поэтому
Метод левых треугольников формулаи Метод левых треугольников формула.

Полученное неравенство представляет собой оценку абсолютной погрешности метода прямоугольников.

Видео:Метод левых, правых и средних прямоугольниковСкачать

Метод левых, правых и  средних прямоугольников

Метод левых прямоугольников и метод правых прямоугольников.

Перейдем к модификациям метода прямоугольников.

Метод левых треугольников формула— это формула метода левых прямоугольников.

Метод левых треугольников формула— это формула метода правых прямоугольников.

Метод левых треугольников формула

Отличие от метода средних прямоугольников заключается в выборе точек Метод левых треугольников формулане в середине, а на левой и правой границах элементарных отрезков соответственно.

Абсолютная погрешность методов левых и правых прямоугольников оценивается как Метод левых треугольников формула.

Видео:Метод СимпсонаСкачать

Метод Симпсона

Примеры применения метода прямоугольников при приближенном вычислении определенных интегралов.

Перейдем к решению примеров, в которых требуется вычислить приближенное значение определенного интеграла методом прямоугольников.

В основном, встречаются два типа задач. В первом случае задается количество интервалов, на которые разбивается отрезок интегрирования. Во втором случае задается допустимая абсолютная погрешность.

Формулировки задач примерно следующие:

  • вычислить приближенно определенный интеграл методом прямоугольников, разбив отрезок интегрирования на n частей;
  • Методом прямоугольников найти приближенное значение определенного интеграла с точностью до одной сотой (одной тысячной и т.п.).

Разберем каждый случай.

Сразу оговоримся, что в примерах подынтегральные функции будем брать такие, чтобы можно было найти их первообразные. В этом случае мы сможем вычислить точное значение определенного интеграла и сравнить его с приближенным значением, полученным по методу прямоугольников.

Вычислить определенный интеграл Метод левых треугольников формуламетодом прямоугольников, разбив отрезок интегрирования на 10 частей.

В нашем примере a = 4, b = 9, n = 10 , Метод левых треугольников формула.

Внимательно посмотрим на формулу прямоугольников Метод левых треугольников формула.

Чтобы ее применить, нам нужно вычислить шаг h и значения функции Метод левых треугольников формулав точках Метод левых треугольников формула.

Вычислим шаг: Метод левых треугольников формула.

Так как Метод левых треугольников формула, то Метод левых треугольников формула.

Для i = 1 имеем Метод левых треугольников формула. Находим соответствующее значение функции Метод левых треугольников формула.

Для i = 2 имеем Метод левых треугольников формула. Находим соответствующее значение функции Метод левых треугольников формула.

И так продолжаем вычисления до i = 10 .

Для удобства представим результаты в виде таблицы.
Метод левых треугольников формула

Подставляем полученные значения в формулу прямоугольников:
Метод левых треугольников формула

Значение исходного определенного интеграла можно вычислить по формуле Ньютона-Лейбница:
Метод левых треугольников формула.

Первообразная Метод левых треугольников формулаподынтегральной функции Метод левых треугольников формулабыла найдена интегрированием по частям.

Как видите, точное значение определенного интеграла отличается от значения, полученного по методу прямоугольников для n = 10 , менее чем на шесть сотых долей единицы.

Метод левых треугольников формула

Вычислите приближенное значение определенного интеграла Метод левых треугольников формуламетодами левых и правых прямоугольников с точностью до одной сотой.

По условию имеем a = 1, b = 2 , Метод левых треугольников формула.

Чтобы применить формулы правых и левых прямоугольников нам необходимо знать шаг h , а чтобы вычислить шаг h необходимо знать на какое число отрезков n разбивать отрезок интегрирования. Так как в условии задачи нам указана точность вычисления 0.01 , то число n мы можем найти из оценки абсолютной погрешности методов левых и правых прямоугольников.

Нам известно, что Метод левых треугольников формула. Следовательно, если найти n , для которого будет выполняться неравенство Метод левых треугольников формула, то будет достигнута требуемая степень точности.

Найдем Метод левых треугольников формула— наибольшее значение модуля первой производной подынтегральной функции Метод левых треугольников формулана отрезке [1; 2] . В нашем примере это сделать достаточно просто.
Метод левых треугольников формула

Графиком функции производной подынтегральной функции является парабола, ветви которой направлены вниз, на отрезке [1; 2] ее график монотонно убывает. Поэтому достаточно вычислить модули значения производной на концах отрезка и выбрать наибольшее:
Метод левых треугольников формула

В примерах со сложными подынтегральными функциями Вам может потребоваться теория раздела наибольшее и наименьшее значение функции.

Таким образом:
Метод левых треугольников формула

Число n не может быть дробным (так как n – натуральное число – количество отрезков разбиения интервала интегрирования). Поэтому, для достижения точности 0.01 по методу правых или левых прямоугольников, мы можем брать любое n = 9, 10, 11, … Для удобства расчетов возьмем n = 10 .

Формула левых прямоугольников имеет вид Метод левых треугольников формула, а правых прямоугольников Метод левых треугольников формула. Для их применения нам требуется найти h и Метод левых треугольников формуладля n = 10 .

Итак, Метод левых треугольников формула

Точки разбиения отрезка [a; b] определяются как Метод левых треугольников формула.

Для i = 0 имеем Метод левых треугольников формулаи Метод левых треугольников формула.

Для i = 1 имеем Метод левых треугольников формулаи Метод левых треугольников формула.

И так далее до i = 10 .

Полученные результаты удобно представлять в виде таблицы:
Метод левых треугольников формула

Подставляем в формулу левых прямоугольников:
Метод левых треугольников формула

Подставляем в формулу правых прямоугольников:
Метод левых треугольников формула

Вычислим точное значение определенного интеграла по формуле Ньютона-Лейбница:
Метод левых треугольников формула

Очевидно, точность в одну сотую соблюдена.

Метод левых треугольников формула

Во многих случаях нахождение наибольшего значения модуля первой производной (или второй производной для метода средних прямоугольников) подынтегральной функции на отрезке интегрирования является очень трудоемкой процедурой.

Поэтому можно действовать без использования неравенства для оценки абсолютной погрешности методов численного интегрирования. Хотя оценки предпочтительнее.

Для методов правых и левых прямоугольников можно использовать следующую схему.

Берем произвольное n (например, n = 5 ) и вычисляем приближенное значение интеграла. Далее удваиваем количество отрезков разбиения интервала интегрирования, то есть, берем n = 10 , и вновь вычисляем приближенное значение определенного интеграла. Находим разность полученных приближенных значений для n = 5 и n = 10 . Если абсолютная величина этой разности не превышает требуемой точности, то в качестве приближенного значения определенного интеграла берем значение при n = 10 , предварительно округлив его до порядка точности. Если же абсолютная величина разности превышает требуемую точность, то вновь удваиваем n и сравниваем приближенные значения интегралов для n = 10 и n = 20 . И так продолжаем до достижения требуемой точности.

Для метода средних прямоугольников действуем аналогично, но на каждом шаге вычисляем треть модуля разности полученных приближенных значений интеграла для n и 2n . Этот способ называют правилом Рунге.

Вычислим определенный интеграл из предыдущего примера с точностью до одной тысячной по методу левых прямоугольников.

Не будем подробно останавливаться на вычислениях.

Для n = 5 имеем Метод левых треугольников формула, для n = 10 имеем Метод левых треугольников формула.

Так как Метод левых треугольников формула, тогда берем n = 20 . В этом случае Метод левых треугольников формула.

Так как Метод левых треугольников формула, тогда берем n = 40 . В этом случае Метод левых треугольников формула.

Так как Метод левых треугольников формула, то, округлив 0.01686093 до тысячных, утверждаем, что значение определенного интеграла Метод левых треугольников формуларавно 0.017 с абсолютной погрешностью 0.001 .

В заключении остановимся на погрешности методов левых, правых и средних прямоугольников более детально.

Из оценок абсолютных погрешностей видно, что метод средних прямоугольников даст большую точность, чем методы левых и правых прямоугольников для заданного n . В то же время, объем вычислений одинаков, так что использование метода средних прямоугольников предпочтительнее.

Если говорить о непрерывных подынтегральных функциях, то при бесконечном увеличении числа точек разбиения отрезка интегрирования приближенное значение определенного интеграла теоретически стремиться к точному. Использование методов численного интегрирования подразумевает использование вычислительной техники. Поэтому следует иметь в виду, что при больших n начинает накапливаться вычислительная погрешность.

Еще заметим, если Вам требуется вычислить определенный интеграл с некоторой точностью, то промежуточные вычисления проводите с более высокой точностью. Например, Вам требуется вычислить определенный интеграл с точностью до одной сотой, тогда промежуточные вычисления проводите с точностью как минимум до 0.0001 .

При вычислении определенного интеграла методом прямоугольников (методом средних прямоугольников) пользуемся формулой Метод левых треугольников формулаи оцениваем абсолютную погрешность как Метод левых треугольников формула.

Для метода левых и правых прямоугольников пользуемся формулами Метод левых треугольников формулаи Метод левых треугольников формуласоответственно. Абсолютную погрешность оцениваем как Метод левых треугольников формула.

Видео:Метод средних прямоугольниковСкачать

Метод средних прямоугольников

Вычисление интегралов по формулам прямоугольников и трапеций. Оценка погрешности

  • Дидактическая цель. Познакомить учащихся с методами приближённого вычисления определённого интеграла.
  • Воспитательная цель. Тема данного занятия имеет большое практическое и воспитательное значение. Наиболее просто к идее численного интегрирования можно подойти, опираясь на определение определённого интеграла как предела интегральных сумм. Например, если взять какое-либо достаточно мелкое разбиение отрезка [a; b] и построить для него интегральную сумму, то её значение можно приближённо принять за значение соответствующего интеграла. При этом важно быстро и правильно производить вычисления с привлечением вычислительной техники.

Основные знания и умения. Иметь понятие о приближённых методах вычисления определённого интеграла по формулам прямоугольников и трапеций.

  • Раздаточный материал. Карточки-задания для самостоятельной работы.
  • ТСО. Мультипроектор, ПК, ноутбуки.
  • Оснащение ТСО. Презентации: “Геометрический смысл производной”, “Метод прямоугольников”, “Метод трапеций”. (Презентации можно взять у автора).
  • Вычислительные средства: ПК, микрокалькуляторы.
  • Методические рекомендации

Вид занятия. Интегрированное практическое.

Мотивация познавательной деятельности учащихся. Очень часто приходится вычислять определённые интегралы, для которых невозможно найти первообразную. В этом случае применяют приближённые методы вычисления определённых интегралов. Иногда приближённый метод применяют и для “берущихся” интегралов, если вычисление по формуле Ньютона-Лейбница не рационально. Идея приближённого вычисления интеграла заключается в том, что кривая Метод левых треугольников формулазаменяется новой, достаточно “близкой” к ней кривой. В зависимости от выбора новой кривой можно использовать ту или иную приближённую формулу интегрирования.

  1. Формула прямоугольников.
  2. Формула трапеций.
  3. Решение упражнений.
  1. Повторение опорных знаний учащихся.

Повторить с учащимися: основные формулы интегрирования, сущность изученных методов интегрирования, геометрический смысл определённого интеграла.

Решение многих технических задач сводится к вычислению определённых интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближённого значения.

Пусть, например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно. В этом случае можно заменить данную линию более простой, уравнение которой известно. Площадь полученной таким образом криволинейной трапеции принимается за приближённое значение искомого интеграла.

Простейшим приближённым методом является метод прямоугольников. Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD заменяется суммой площадей прямоугольников, одна сторона которых равна Метод левых треугольников формула, а друга — Метод левых треугольников формула.

Если суммировать площади прямоугольников, которые показывают площадь криволинейной трапеции с недостатком [Рисунок1], то получим формулу:

Метод левых треугольников формула

Метод левых треугольников формула

то получим формулу: Метод левых треугольников формула

Если с избытком

Метод левых треугольников формула

Метод левых треугольников формула

то Метод левых треугольников формула

Значения у0, у1. уn находят из равенств Метод левых треугольников формула, к = 0, 1. n .Эти формулы называются формулами прямоугольников и дают приближённый результат. С увеличением n результат становится более точным.

Итак, чтобы найти приближённое значение интеграла Метод левых треугольников формула, нужно:

  • разделить отрезок интегрирования [a, b] на n равных частей точками х0= а, х1, х2. х n -1, х n = b ;
  • вычислить значения подынтегральной функции Метод левых треугольников формулав точках деления, т.е. найти у 0 =f (x0), у 1 =f (x1), у 2 =f (x2), у n -1 =f (xn-1), у n =f (xn) ;
  • воспользоваться одной из приближённых формул.

Для того, чтобы найти погрешность вычислений, надо воспользоваться формулами:

Метод левых треугольников формула
Метод левых треугольников формула

Пример 1. Вычислить по формуле прямоугольников Метод левых треугольников формула. Найти абсолютную и относительную погрешности вычислений.

Разобьём отрезок [a, b] на несколько (например, на 6) равных частей. Тогда а = 0, b = 3 , Метод левых треугольников формула

х k = a + k Метод левых треугольников формула Метод левых треугольников формулах
х
0 = 2 + 0 Метод левых треугольников формула Метод левых треугольников формула= 2
х1 = 2 + 1 Метод левых треугольников формула Метод левых треугольников формула= 2,5
х2 = 2 + 2 Метод левых треугольников формула Метод левых треугольников формула=3
х3 = 2 + 3 Метод левых треугольников формула Метод левых треугольников формула= 3
х4 = 2 + 4 Метод левых треугольников формула Метод левых треугольников формула= 4
х5 = 2 + 5 Метод левых треугольников формула Метод левых треугольников формула= 4,5

х22,533,544,5
у46,25912,251620,25

Метод левых треугольников формула

Для того, чтобы вычислить относительную погрешность вычислений, надо найти точное значение интеграла:

Метод левых треугольников формула
Метод левых треугольников формула
Метод левых треугольников формула

Вычисления проходили долго и мы получили довольно-таки грубое округление. Чтобы вычислить этот интеграл с меньшим приближением, можно воспользоваться техническими возможностями компьютера.

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х Метод левых треугольников формула[2 ;5 ] с заданным шагом Метод левых треугольников формулах = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (2). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (2,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А32, до значения х=5).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2 и с клавиатуры ввести формулу =А2^2 (при английской раскладке клавиатуры). Нажимаем клавишу Enter. В ячейке В2 появляется 4. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В32.
    В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В33 может быть найдено приближённое значение интеграла. Для этого в ячейку В33 вводим формулу = 0,1*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В31. Нажимаем кнопку ОК. В ячейке В33 появляется приближённое значение искомого интеграла с недостатком (37,955) .

Сравнивая полученное приближённое значение с истинным значением интеграла (39), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод левых треугольников формула= |39 — 37 , 955| = 1 ,045
Метод левых треугольников формула

Пример 2. Используя метод прямоугольников, вычислить Метод левых треугольников формулас заданным шагом Метод левых треугольников формулах = 0,05.

  1. Для нахождения определённого интеграла значения подынтегральной функции f(x) должны быть введены в рабочую таблицу Excel в диапазоне Метод левых треугольников формулас заданным шагом Метод левых треугольников формулах = 0,05. В созданную уже таблицу данных в ячейку А2 вводится левая граница интегрирования (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,05). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=1,55).
  2. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение косинуса, соответствующее значению аргумента в ячейке А2. Для получения значения косинуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции ( fх ) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию COS. Нажимаем кнопку ОК. Появляется диалоговое окно COS. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента косинуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 1. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  3. Теперь в ячейке В34 может быть найдено приближённое значение интеграла. Для этого в ячейку В34 вводим формулу = 0,05*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции ( ( fх )) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В32. Нажимаем кнопку ОК. В ячейке В34 появляется приближённое значение искомого интеграла с избытком (1,024056).

Сравнивая полученное приближённое значение с истинным значением интеграла Метод левых треугольников формула, можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод левых треугольников формула
Метод левых треугольников формула

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников. Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций

Метод левых треугольников формула

Метод левых треугольников формула

Метод левых треугольников формула

Пример 3. Методом трапеций найти Метод левых треугольников формулас шагом Метод левых треугольников формулах = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х, а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент, а в ячейку В1 – слово Функция. В ячейку А2 вводится первое значение аргумента – левая граница диапазона (0). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,1). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=3,1).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение (в примере синуса). Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение синуса, соответствующее значению аргумента в ячейке А2. Для получения значения синуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции f(x). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию SIN. Нажимаем кнопку ОК. Появляется диалоговое окно SIN. Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А). Указываем значение аргумента синуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В34 может быть найдено приближённое значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу = 0,1*((В2+В33)/2+, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)). В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция — функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В3:В32. Нажимаем кнопку ОК и ещё раз ОК. В ячейке В34 появляется приближённое значение искомого интеграла с недостатком (1,997) .

Сравнивая полученное приближённое значение с истинным значением интеграла Метод левых треугольников формуламожно видеть, что ошибка приближения метода прямоугольников в данном случае вполне приемлемая для практики.

Метод левых треугольников формула
Метод левых треугольников формула

  1. Решение упражнений.
  1. Вычислить Метод левых треугольников формуламетодом прямоугольников, разделив отрезок [0;1] на 20 равных частей.
    Метод левых треугольников формула
  2. Вычислить методом трапеций Метод левых треугольников формула
  3. Вычислить методом трапеций Метод левых треугольников формула
  4. Вычислить методом трапеций Метод левых треугольников формула
  5. Вычислить Метод левых треугольников формуларазделив отрезок [0;4] на 40 равных частей.
  6. Вычислить Метод левых треугольников формуларазделив отрезок [0;8] на 40 равных частей.
  7. Вычислить Метод левых треугольников формула

Видео:Формула СимпсонаСкачать

Формула Симпсона

Метод прямоугольников

Вы будете перенаправлены на Автор24

Рассмотрим задачу, в которой требуется вычислить определённый интеграл $int^b_a f(x)dx$, при этом функция $f(x)$ является непрерывной на промежутке $left[a;bright]$. Обычно, если существует возможность, интегралы вычисляются через нахождение первообразной, но так как это не всегда возможно, прибегают к использованию приближённых методов.

К наиболее часто используемым приближённым методам относят:

  • Метод прямоугольников;
  • Метод трапеций;
  • Метод Симпсона или иначе метод парабол.

В данной статье мы подробно расcмотрим метод прямоугольников.

Видео:метод прямоугольниковСкачать

метод прямоугольников

Сущность метода прямоугольников

Рассмотрим нахождение определённого интеграла от функции $f(x)$ с точки зрения геометрии. Интеграл $int^b_a f(x)dx$ в данном случае есть не что иное, как площадь фигуры, ограниченной сверху графиком $f(x)$, по бокам прямыми $x=a$ и $x=b$, а снизу осью абсцисс.

Рисунок 1. Метод средних прямоугольников

Для того чтобы найти площадь всей фигуры, можно воспользоваться определением интеграла и разбить всю фигуру на равные сегменты одной и той же длины. Точки на оси абсцисс, которые будут разбивать фигуру, обозначим как $x_i$. Нулевая точка при разбиении $x_0=a$, а конечная точка $x_n=b$. Для того чтобы вычислить длину одного сегмента, воспользуемся формулой:

В методе средних прямоугольников каждый сегмент заменяется на прямоугольник, за высоту которого принимается ордината середины отрезка. Получается, что площадь одного такого прямоугольника равна $S_i= frac cdot f(ξ_i)$, а площадь всей фигуры будет равна:

$int^b_a f(x)dx=fraccdot (f( ξ_0)+f( ξ_1)+. +f( ξ_)$, где $x_i≤ ξ_i≤x_$

Готовые работы на аналогичную тему

Эта формула позволяет не вычислять напрямую площадь искомой фигуры, ограниченной кривой линией, а заменить её приблизительной площадью ступенчатой фигуры, состоящей из прямоугольников.

При использовании метода средних прямоугольников так как $ξ_i=frac<x_i+x_>=x_<i+frac>$, тогда $f( ξ_i)=f(x_<i+frac>)$ обозначим как $y_<i+ frac>$,

и формула примет вид:

Эта формула называется формулой средних прямоугольников.

Видео:Метод левых прямоугольников, разбор задачиСкачать

Метод левых прямоугольников, разбор задачи

Методы левых и правых прямоугольников

Данные методы отличаются от метода средних прямоугольников тем, что здесь в качестве ординаты для элементарного прямоугольника выбирается либо крайнее левое значение функции $f(x)$ (и тогда метод называется методом левых прямоугольников), либо крайнее правое, и тогда метод носит название метода правых прямоугольников.

Формула для применения метода левых прямоугольников выглядит так:

$int^b_a f(x)dx=fraccdot (y_0 + y_1 + y_)left(2right)$

Формула для метода правых прямоугольников:

$int^b_a f(x)dx=fraccdot (y_1 + y_2 + y_n)left(3right)$

Формулы $(1), (2), (3)$ иначе также называются квадратурными составными формулами.

Видео:Метод левых и метод правых прямоугольниковСкачать

Метод левых и метод правых прямоугольников

Погрешность метода прямоугольников

Для того чтобы оценить общую погрешность метода прямоугольников, необходимо рассмотреть каждый из элементарных сегментов кривой по отдельности. Общая погрешность в таком случае представляет собой сумму погрешностей всех погрешностей сегментов.

Итак, рассмотрим, чему равна погрешность на одном сегменте.

Площадь одного сегмента вычисляется по приближённой формуле:

Погрешность будем определять по разнице со значением первообразной, вычисленной с помощью формулы Ньютона-Лейбница: $δ_i= int^_<x_> f(x)dx — f(x_+frac<x_-x_>) cdot (x_i-x_)left(5right)$

Так как в левой части равенства $x_-x_$ есть не что иное как $int^x_<x_>dx$ — длина элементарного отрезка, его можно заменить на $dx$. Перепишем правую часть равенства $(4)$, используя это:

Допуская, что фунцкия $f(x)$ дважды дифференцируема в точке $x=x_-x_$ и вокруг неё, разложим её в бесконечную сумму степенных функций, используя ряды Тейлора и формулу Лагранжа:

Применим полученное для подстановки: $f(x)-f(x_+ frac)=f’(x_+frac) cdot(x-(x_ + frac))+f’’(ε_i) cdot frac<(x-(x_+frac))^2>left(7right)$

В конечном итоге для элементарного сегмента $left[x_;x_iright]$ имеем:

Для всей же фигуры погрешность полученной площади составит:

и в конечном виде:

Данная формула используется для получения погрешности при использовании формулы для средних прямоугольников.

Формула для погрешности методов правых и левых прямоугольников выводится аналогичным способом и имеет следующий вид:

Погрешность, полученная с использованием метода правых или левых прямоугольников для вычисления интегралов больше, чем погрешность при использовании метода средних прямоугольников. Поэтому более предпочтительным для приближённого интегрирования является именно метод средних прямоугольников.

Вычислить интеграл $int_1^2 frac=ln2$ с точностью до $0, 001$ используя формулу средних прямоугольников.

Разобьём нашу функцию на 10 равных сегментов.

В начале оценим погрешность вычисления:

В данном случае погрешность меньше либо равна:

$|δ_n|≤0.000042$, следовательно, в данном случае для разбиения можно использовать 10 сегментов.

Разобьём подынтегральную функцию на 10 отрезков, длина каждого из которых $Δx=frac=0,1$ и вычислим значение подынтегральной функции $y(x)=frac$ в середине каждого отрезка:

Сумма всех вычисленных значений функции $f(x)$ составит $6.9284$, а само значение составит:

$int_1^2 frac=frac=0.69284$ — что отвечает требуемому условию о погрешности.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 25 02 2021

🎬 Видео

Метод трапеций при вычислении определенного интегралаСкачать

Метод трапеций при вычислении определенного интеграла

3.2 Численное интегрирование (лекция)Скачать

3.2 Численное интегрирование (лекция)

Формула СимпсонаСкачать

Формула Симпсона

3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)Скачать

3. Численные методы расчета определенного интеграла: прямоугольников, трапеции, парабол (Симпсона)

Метод трапецийСкачать

Метод трапеций

1603.Численное интегрированиеСкачать

1603.Численное интегрирование

Как приближённо вычислить интеграл? Формула прямоугольников, трапеций и парабол (Симпсона)Скачать

Как приближённо вычислить интеграл? Формула прямоугольников, трапеций и парабол (Симпсона)

Численные методы решения интегралов в MS ExcelСкачать

Численные методы решения интегралов в  MS Excel

Численное интегрированиеСкачать

Численное интегрирование

ЧМ-5. Численное интегрирование. Часть 1/2Скачать

ЧМ-5. Численное интегрирование. Часть 1/2

6 Теория: Определенный интеграл Метод левых, правых, центральных прямоугольников, трапеций, СимпсонаСкачать

6 Теория: Определенный интеграл Метод левых, правых, центральных прямоугольников, трапеций, Симпсона
Поделиться или сохранить к себе: