Что называется медианой треугольника?
Определение.
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Как построить медиану треугольника?
Чтобы построить медиану треугольника , надо:
1) С помощью линейки найти и отметить середину стороны треугольника.
2) Соединить полученную точку с вершиной, лежащей напротив этой стороны.
Рисунок медианы треугольника:
Как построить медиану треугольника с помощью циркуля и линейки без шкалы, мы рассмотрим позже, в теме «Построить треугольник».
Сколько медиан имеет треугольник?
Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три. Значит, треугольник имеет три медианы.
Все три медианы треугольника пересекаются в одной точке:
Точка пересечения медиан называется центром тяжести треугольника.
В точке пересечения медианы треугольника делятся в отношении два к одному, считая от вершины:
Об этом свойстве медиан треугольника, а также о том, как найти длину медианы через длины сторон треугольника, более подробно мы поговорим позже и рассмотрим, как свойства медианы использовать при решении задач.
Кроме того, отдельно будут рассмотрены медиана прямоугольного треугольника, проведенная к гипотенузе и медиана равнобедренного треугольника, проведенная к его основанию, поскольку каждая из них обладает своими свойствами, которые надо знать и уметь применять.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Пошаговое построение медианы, биссектрисы медианы в треугольнике с помощью циркуля
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Поэтому, для построения медианы необходимо выполнить следующие действия:
1) найти середину стороны;
2) соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.
Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне. Поэтому, для построения биссектрисы необходимо выполнить следующие действия:
1) построить биссектрису какого-либо угла треугольника (а биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3) соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону. Поэтому, для построения высоты необходимо выполнить следующие действия:
1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2) из вершины, лежащей напротив проведенной прямой, опустить перпендикуляр к ней ( а перпендикуляр — это отрезок, проведенный из точки к прямой, составляющей с ней угол 90 градусов) — это и будет высота.
Задание для самостоятельной проверки.
1 вариант: Построить медиану остроугольного треугольника.
2 вариант: Построить медиану тупоугольного треугольника.
3 вариант: Построить медиану прямоугольного треугольника.
4 вариант: Построить биссектрису остроугольного треугольника.
5 вариант: Построить биссектрису тупоугольного треугольника.
6 вариант: Построить биссектрису прямоугольного треугольника.
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Медианы, биссектрисы и высоты треугольника
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы продолжим рассмотрение элементов треугольника – медиан, биссектрис и высот треугольника.
Вначале дадим определение медианы треугольника и рассмотрим три медианы треугольника. Дадим определение биссектрисы треугольника и рассмотрим три биссектрисы треугольника. Дадим определение высоты треугольника и рассмотрим высоты в произвольном треугольнике и в тупом треугольнике. Далее решим ряд задач с использованием этих элементов.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»
💥 Видео
Построение медианы в треугольникеСкачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Построение биссектрисы в треугольникеСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Построение высоты в треугольникеСкачать
Высота медиана биссектриса в тупоугольном треугольникеСкачать
8. Медиана треугольника и её свойства.Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.Скачать
Построение биссектрисы угла. 7 класс.Скачать
Медиана треугольника. Построение. Свойства.Скачать
Высоты треугольника.Скачать
Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать
Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать
Геометрия 7. Урок 10 - Построение циркулем и линейкойСкачать
Точка пересечения высот треугольника.Скачать
Построение медианы равнобедренного треугольника с помощью циркуляр линейкиСкачать
Построить описанную окружность (Задача 1)Скачать