Скалярным произведением двух ненулевых векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если хотя бы один из двух векторов нулевой, то угол между ними не определён, а скалярное произведение считается равным нулю. Скалярное произведение векторов и обозначается
где — величина угла между векторами и .
Скалярное произведение вектора самого на себя называется скалярным квадратам.
Пример 1.13. Найти скалярные произведения , если известно, что , угол между векторами и равен , , а вектор образует с вектором угол (рис.1.36).
Решение. По определению находим
Так как векторы и противоположно направленные, то угол между векторами и равен . Поэтому
Угол между противоположно направленными векторами и равен , поэтому
Вектор ортогонален вектору (и вектору ), так как величина угла между ними равна , а . Поэтому .
Угол между векторами и равен , поэтому .
- Геометрический смысл скалярного произведения векторов
- Алгебраические свойства скалярного произведения
- Геометрические свойства скалярного произведения
- Скалярное произведение в координатах
- Скалярное произведение и его свойства
- Скалярное произведение с примерами и решениями
- Физический смысл скалярного произведения
- Геометрия
- Угол между векторами
- Понятие скалярного произведения векторов
- Скалярное произведение в координатах
- Определение перпендикулярности векторов и прямых
- Вычисление угла между векторами
- Свойства скалярного произведения
- Скалярное произведение векторов и его свойства
- Геометрический смысл скалярного произведения векторов
- Алгебраические свойства скалярного произведения
- Геометрические свойства скалярного произведения
- 🎬 Видео
Видео:Скалярное произведение векторов. 9 класс.Скачать
Геометрический смысл скалярного произведения векторов
Рассмотрим ортогональную проекцию ненулевого вектора на ось, задаваемую вектором (рис. 1.37). Согласно пункту 1 замечаний 1.4, алгебраическое значение длины проекции равно произведению длины вектора на косинус угла между векторами и :
Умножив обе части этого равенства на , получим . Сравнивая с (1.7), делаем вывод: скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором :
Эта формула остается справедливой и в случае , так как .
Аналогично (см. пункт 2 замечаний 1.4) доказывается формула и делается вывод о том, что скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
Видео:9 класс, 18 урок, Скалярное произведение векторовСкачать
Алгебраические свойства скалярного произведения
Для любых векторов и любого действительного числа :
4. , причем из равенства следует, что .
Первое свойство определяет симметричность скалярного произведения, второе и третье — аддитивность и однородность по первому множителю, четвертое свойство — неотрицательность скалярного квадрата. Эти свойства аналогичны свойствам произведения чисел: первое свойство соответствует закону коммутативности умножения чисел, второе — закону дистрибутивности умножения по отношению к сложению, третье — закону ассоциативности умножения. Поэтому рассматриваемая операция и называется произведением векторов. Поскольку ее результатом является число (скаляр), то такое произведение векторов называется скалярным.
Свойства 1 и 4 следуют непосредственно из определения. Докажем, например, аддитивность скалярного произведения по первому множителю (свойство 2): . Если вектор — нулевой, то все скалярные произведения равны нулю по определению, т.е. для имеем верное равенство. Пусть . Учитывая, что проекция суммы векторов равна сумме проекций (то же относится и к алгебраическим значениям длин ортогональных проекций), можно записать .
Умножая обе части на , получаем .
Учитывая (1.8), последнее равенство равносильно , что и требовалось доказать. Однородность скалярного произведения по первому множителю (свойство 3) доказывается аналогично, используя соответствующее свойство ортогональных проекций векторов.
1. Свойства аддитивности и однородности скалярного произведения означают линейность скалярного произведения по первому множителю :
для любых векторов и любых действительных чисел и .
2. В силу коммутативности скалярное произведение линейно и по второму множителю, т.е. линейно по любому множителю .
3. Для любых векторов справедливо неравенство Коши — Буняковского
Это неравенство выражает условие ограниченности косинуса угла между ненулевыми векторами. В самом деле, поскольку , то из (1.7)
и, следовательно, справедливо доказываемое неравенство. Заметим, что неравенство Коши — Буняковского выполняется как равенство только для коллинеарных векторов, т.е. при .
4. Из неравенства Коши — Буняковского следует неравенство треугольника (длина стороны треугольника меньше суммы длин двух других его сторон и больше модуля их разности):
Докажем последнее неравенство . Используя неравенство , которое следует из неравенства Коши — Буняковского, оценим скалярный квадрат суммы векторов:
т.е. , что равносильно доказываемому неравенству.
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Геометрические свойства скалярного произведения
С помощью скалярного произведения можно находить основные метрические величины: длины отрезков (или, что то же самое, длины векторов) и величины углов.
1. Длина вектора а находится по формуле: .
2. Величина угла между ненулевыми векторами находится по формуле:
Отсюда заключаем, что:
— ненулевые векторы и перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю: ;
— угол между ненулевыми векторами и острый тогда и только тогда, когда их скалярное произведение положительно;
— угол между ненулевыми векторами и тупой frac
ight)» png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAAmBAMAAAClsdF/AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAZvHEYFEYuAx8CFysX6e75gAAAHwSURBVDjLY2AgCbCY4JBgFBQUZGBwcoALOE/ArtDpHRAUMLAjDLLBYaJRsGpTjAMDoy5MhNUAu0r2AuGNC0EMjgNQkX0JuDywQ/ohWMsSKF8Zp1eD2MBmMjZBuNzPcSlkXM4GNpOhbgOYYlqISyX7E56XYIZfAJiSUsClksOA7SmY /> тогда и только тогда, когда их скалярное произведение отрицательно.
3. Алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
4. Ортогональная проекция вектора на ось, задаваемую вектором .
Если ось задается единичным вектором , то .
Свойства 1 и 2 следуют непосредственно из определения скалярного произведения. Третье и четвертое свойства вытекают из геометрического смысла скалярного произведения (см. (1.8)) и п.1 замечаний 1.4.
Пример 1.14. Доказать тождества
Решение. Используя коммутативность и линейность скалярного произведения, запишем равенства
Заменяя скалярные квадраты векторов квадратами их длин (см. геометрическое свойство 1), получаем
Если из первого равенства вычесть второе, то придем к тождеству (а). Если же сложить оба равенства, то получим тождество (б).
Доказанные равенства выражают следующие свойства параллелограмма, построенного на векторах и ( и — его диагонали):
а) скалярное произведение векторов равно одной четвертой от разности квадратов диагоналей параллелограмма, построенного на множителях;
б) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.
Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:
a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ — обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0
При умножении вектора самого на себя, получим квадрат его дины:
a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2
Скалярное умножение вектора самого на себя называют скалярным квадратом.
Вычисляется по формуле:
a → , b → = a → · b → · cos a → , b → ^ .
Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → — это числовая проекция a → на b → , n p a → a → — проекция b → на a → соостветсвенно.
Сформулируем определение произведения для двух векторов:
Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.
Видео:Угол между векторами. 9 класс.Скачать
Скалярное произведение в координатах
Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.
Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .
При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:
a → , b → = a x · b x + a y · b y ,
для трехмерного пространства применимо выражение:
a → , b → = a x · b x + a y · b y + a z · b z .
Фактически это является третьим определением скалярного произведения.
Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.
Следует отложить векторы
O A → = a → = a x , a y и O B → = b → = b x , b y .
Тогда длина вектора A B → будет равна A B → = O B → — O A → = b → — a → = ( b x — a x , b y — a y ) .
Рассмотрим треугольник O A B .
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.
По условию видно, что O A = a → , O B = b → , A B = b → — a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе
b → — a → 2 = a → 2 + b → 2 — 2 · a → · b → · cos ( a → , b → ^ ) .
Тогда из первого определения следует, что b → — a → 2 = a → 2 + b → 2 — 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 — b → — a → 2 ) .
Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 — ( ( b x — a x ) 2 + ( b y — a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y — ( b x — a x ) 2 — ( b y — a y ) 2 ) = = a x · b x + a y · b y
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z
– соответственно для векторов трехмерного пространства.
Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .
Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать
Скалярное произведение и его свойства
Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :
- коммутативность ( a → , b → ) = ( b → , a → ) ;
- дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
- сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ — любое число;
- скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.
Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.
Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .
По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .
Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.
Дистрибутивность справедлива для любых чисел:
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )
и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,
( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )
Видео:18+ Математика без Ху!ни. Векторное произведение.Скачать
Скалярное произведение с примерами и решениями
Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:
- ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
- ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
- ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
- ( a → , a → ) = a → 2 .
Рассмотрим некоторые примеры решения.
Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.
По условию имеем все данные, поэтому вычисляем по формуле:
( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2
Ответ: ( a → , b → ) = 21 2 .
Заданны векторы a → = ( 1 , — 1 , 2 — 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.
В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:
( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( — 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 — 2 + ( 2 — 9 ) = — 9
Ответ: ( a → , b → ) = — 9
Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , — 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .
Для начала вычисляются координаты векторов, так как по условию даны координаты точек:
A B → = ( 5 — 1 , 4 — ( — 3 ) ) = ( 4 , 7 ) A C → = ( 1 — 1 , 1 — ( — 3 ) ) = ( 0 , 4 )
Подставив в формулу с использованием координат, получим:
( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .
Ответ: ( A B → , A C → ) = 28 .
Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.
( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:
( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )
Выносим коэффициент за знак произведения и получим:
( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )
По свойству коммутативности преобразуем:
35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )
В итоге получим:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .
Теперь применим формулу для скалярного произведения с заданным по условию углом:
( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .
Ответ: ( a → , b → ) = 411
Если имеется числовая проекция.
Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , — 3 ) , проекция b → с координатами ( — 3 , — 1 , 1 ) .
По условию векторы a → и проекция b → противоположно направленные, потому что a → = — 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:
n p a → b → → = — n p a → b → → = — ( — 3 ) 2 + ( — 1 ) 2 + 1 2 = — 11 ,
Подставив в формулу, получим выражение:
( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( — 3 ) 2 · ( — 11 ) = — 33 .
Ответ: ( a → , b → ) = — 33 .
Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.
Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.
Из формулы видно, что необходимо найти сумму произведений координат:
( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .
В дано имеем ( a → , b → ) = — 1 .
Чтобы найти λ , вычисляем уравнение:
λ 2 + 2 · λ = — 1 , отсюда λ = — 1 .
Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать
Физический смысл скалярного произведения
Механика рассматривает приложение скалярного произведения.
При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:
Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .
Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .
Ответ: A = 15 2 2 .
Материальная точка, перемещаясь из M ( 2 , — 1 , — 3 ) в N ( 5 , 3 λ — 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.
При заданных координатах вектора M N → имеем M N → = ( 5 — 2 , 3 λ — 2 — ( — 1 ) , 4 — ( — 3 ) ) = ( 3 , 3 λ — 1 , 7 ) .
По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ — 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ — 1 ) + 2 · 7 = 22 + 3 λ .
По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = — 3 , значит и M N → = ( 3 , 3 λ — 1 , 7 ) = ( 3 , — 10 , 7 ) .
Чтобы найти длину перемещения M N → , применим формулу и подставим значения:
Есть несколько операций умножения векторов. Рассмотрим одну из них, результатом которой является действительное число, т. е. скалярная величина.
Определение 2.3. Скалярным произведением двух векторов а и b называют число, равное |a| |b| cosφ — произведению длин |а| и |b| этих векторов на косинус угла φ между ними.
Если хотя бы один из двух векторов является нулевым, то их скалярное произведение будет равно нулю независимо от того, какое значение выбрано в качестве угла между векторами.
Скалярное произведение векторов а и b далее будем обозначать ab, хотя в литературе встречается и обозначение (a, b).
Используя теорему 1.1, можно выразить скалярное произведение двух векторов через ортогональную проекцию на направление. Если вектор а ненулевой, то скалярное произведение ab векторов а и b получается перемножением длины вектора а и ортогональной проекции вектора b на направление вектора а: ab = |а| прa b. Аналогично при b ≠ 0 имеем равенство ab = |b| прbа.
Если угол между двумя ненулевыми векторами прямой (т.е. равен 90°), то такие векторы называют ортогональными.
Нулевой вектор считают ортогональным любому другому вектору.
Теорема 2.7. Для того чтобы два вектора были ортогональны, необходимо и достаточно, чтобы их скалярное произведение равнялось нулю.
◄ Как следует из определения 2.3, скалярное произведение ненулевых векторов а и b равно |а| |b| cosφ. Поэтому его знак определяется углом p между векторами а и b:
— угол φ острый: ab > 0;
— угол φ тупой: ab 2 .
4°. Свойство скалярного квадрата: а 2 ≥ 0, причем а 2 = 0 тогда и только тогда, когда а = 0.
◄ Действительно, а 2 = аа = |а||а| cos0 = |а| 2 . Поскольку квадрат длины вектора — неотрицательное число, то неравенство а 2 ≥ 0 выполнено всегда. Равенство а 2 = 0 эквивалентно соотношению |а| = 0, т.е. тому, что а — нулевой вектор. ►
Замечание 2.2. Свойства 2° и 3° часто объединяют в свойство линейности скалярного произведения относительно первого сомножителя. Благодаря коммутативности скалярного произведения (свойству 1°) скалярное произведение линейно и по второму сомножителю. Действительно, а(λb) = (λb)а = λ(bа) = λ(ab), a(b + с) = (b + с)а = bа + са = ab + ас. #
Свойства скалярного произведения часто используют при решении задач.
Пример 2.2. Найдем длину вектора a = 3с — 2d при условии, что |с| = 5, |d| = 4, а угол φ между векторами с и d равен 60°.
Поскольку |а| = √а 2 , то, вычисляя скалярный квадрат вектора а, находим, что
а 2 = (3с — 2d)(3c — 2d) = 9с 2 — 12cd + 4d 2 = 9 |с| 2 — 12 |с| |d| cosφ + 4 |d| 2 = 9 ⋅ 25 — 12 ⋅ 5 ⋅ 4 ⋅ 0,5 + 4 ⋅ 16 = 225 — 120 + 64 = 169.
Следовательно, |a| = √а 2 = 13.
Пример 2.3. В треугольнике ABC угол при вершине A равен 120°, а длина стороны AC в три раза больше расстояния между вершинами A и B. Найдем острый угол φ между стороной BC и медианой AM треугольника.
Угол φ между стороной BC и медианой AM (рис. 2.6) равен углу между векторами BC и AM . Согласно определению 2.3 скалярного произведения, косинус угла выражается через скалярное произведение этих векторов и их длины с помощью формулы
cosφ = ( AM ⋅ BC )/ (| AM | ⋅ | BC |)
Пусть |AB| = s. Тогда |AC| = 3s, и поскольку BC = AC — AB , то
AM = AB + BM = AB + 0,5 BC = AB + ( AC — AB ) = 0,5 ( AC + AB )
AM ⋅ BC ) = 0,5 ( AC + AB )( AC — AB ) = 0,5 (| AC | 2 + | AB | 2 ) = 0,5 (9s 2 — s 2 ) = 4s 2
Вычислив длины векторов AM и BC :
Следовательно, острый угол между стороной BC и медианой AM равен φ = arccos(8/√91). #
Пусть векторы а и b из V3 заданы своими координатами в ортонормированном базисе i, j, k: а = a; ya; za>, b = b; yb; zb>. Это означает, что имеются разложения а = xai + yaj + zak, b = xbi + ybj + zbk. Используя их и свойства 1°-4° скалярного произведения, вычислим
Окончательный ответ получен с учетом того, что ортонормированность базиса i, j, k означает выполнение равенств ij = ik = jk = 0, i 2 = j 2 = k 2 = 1. Таким образом,
т. е. скалярное произведение векторов в ортонормированном базисе равно сумме попарных произведений одноименных координат.
Из теоремы 2.7 и формулы (2.14) получаем следующий критерий ортогональности векторов а и b:
Вспомним, что, согласно определению 2.3 скалярного произведения, ab = |a||b| cosφ, где φ = — угол между векторами a и b. Зная, как выражается скалярное произведение и длины векторов через их координаты в ортонормированном базисе, можно вычислить и косинус угла между ненулевыми векторами. Действительно, исходя из формулы
В случае, когда a, b ∈ V2 и известны координаты этих векторов в ортонормированном базисе i, j: a = xai + yaj, b = xbi + ybj, справедливы формулы, аналогичные (2.14)-(2.16):
для вычисления скалярного произведения
для критерия ортогональности
для косинуса угла между ненулевыми векторами а и b
Пример 2.4. Найдем значения параметра t, при которых векторы a = и b = = , заданные своими координатами в ортонормированном базисе, ортогональны. Используя критерий (2.15) ортогональности векторов, получаем уравнение
t(t + 1) + 2(1 — t) — 14 = 0
относительно параметра t. Решая это квадратное уравнение, находим, что лишь при t = -3 и t = 4 данные векторы ортогональны.
Видео:СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать
Геометрия
План урока:
Видео:Геометрия 11 класс (Урок№2 - Скалярное произведение векторов.)Скачать
Угол между векторами
Любую пару векторов можно отложить от одной точки. Если при этом вектора не сонаправлены друг с другом, то они образуют некоторый угол. Его и именуют углом между векторами.
Если же пара векторов сонаправлена, то принято считать, что угол между такими векторами составляет 0°.
На рисунке показаны два вектора, a и b. Чтобы определить угол между a и b, надо отложить их от одной и той же точки:
В приведенном примере угол составил 135°. Для обозначения этого угла может быть использована такая запись:
Задание. В квадрате АВСD проведены диагонали, они пересекаются в точке О. Определите, какой угол образуют вектора:
Так как в квадрате диагонали пересекаются под углом 90°, а со сторонами образуют угол 45°, то мы легко определим, что
Здесь нам помог тот факт, что вектора из пунктов а) и б) изначально отложены из одной точки. С пунктом в) ситуация сложнее. Надо отложить от точки А вектор ОА и определить угол, образующийся при этом:
Пусть после откладывания вектора ОА от А получился вектора АА’. Нам надо найти ∠ВАА’. Нам уже известен ∠ОАВ, который является смежным с ∠ВАА’, поэтому можно записать равенство:
Ответ: а) 45°; б) 90°; в) 135°.
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Понятие скалярного произведения векторов
Большое распространение в науке получила математическая операция, именуемая скалярным произведением векторов. В геометрии оно помогает находить угол между векторами, а в физике вычислять некоторые физические величины. В рамках школьной программы его используют для нахождения работы, совершенной той или иной силой. В рамках же более сложных дисциплин, с которыми мало кто сталкивается, оно применяется в квантовой механике и специальных разделах математики – тензорной алгебре, теории многообразий и т. п. Ввел его в науку Уильям Гамильтон в 1846 г, который разрабатывал теорию особых чисел – кватерионов. Они, кстати, используются компьютерами для расчетов трехмерной графики в играх и других приложениях.
Прежде, чем мы научимся применять на практике скалярное произведение, сначала сформулируем правило, позволяющее вычислить его.
Например, пусть есть вектора a и b, причем даны их длины:
Угол между a и b тоже известен и составляет 60°, это записывается таким образом:
Задание. Вычислите скалярное произведение векторов d и f, если их длины составляют 6 и 10 соответственно, а угол между векторами равен 45°.
Решение. Просто подставляем числа из условия в формулу:
Задание. АВС – равносторонний треугольник со стороной 4. Каково скалярное произведение векторов АВ и АС?
Решение. Все углы в равностороннем треугольнике равны 60°, поэтому и угол между АВ и АС также составляет 60°.
Напомним, что косинус, взятый от острого угла – это положительная величина, а косинус тупого угла – это отрицательное число. У прямого же угла косинус равен нулю. Это означает, что по знаку скалярного произведения можно определить тип угла между векторами.
Часто скалярное произведение применяется в физике. Например, с его помощью рассчитывается работа, совершаемая силой при перемещении того или иного тела. И сила, и перемещение – это векторные величины. Чтобы найти работу силы, надо скалярно перемножить вектора силы и перемещения:
Эта формула отражает физический смысл скалярного произведения.
Задание. Под воздействием силы 10Н тело переместилось в горизонтальном направлении на 3 метра. При этом сила образует угол 60° с направлением перемещения тела. Какую работу совершила сила?
Видео:Векторное произведение | Сущность Линейной Алгебры, Глава 8Скачать
Скалярное произведение в координатах
Оказывается, что для перемножения векторов достаточно знать только их координаты.
Докажем эту формулу. Сначала рассмотрим случай, когда один из перемножаемых векторов, например a, является нулевым. Тогда у него нулевая длина и нулевые координаты:
Теперь рассмотрим случай, когда оба перемножаемых вектора ненулевые. Тогда отложим их от некоторой точки О и, если вектора неколлинеарны, то мы получим ∆ОАВ:
Для частных случаев, когда a и b коллинеарны (то есть либо сонаправлены, либо противоположно направлены), эта формула также справедлива. Если aи b сонаправлены, то угол α принимается равным нулю (и cosα = 1):
Если же a и b направлены противоположно, то α = 180° (и cosα = – 1):
Итак, мы убедились, что в любой ситуации формула (1) справедлива. При этом вектор АВ можно представить как разность a и b:
Если вектор а имеет координаты <x1; у1>, а координаты b– это <x2; у2>,то координаты их разности a – b будут записываться в виде <х1 – х2;у1 – у2>. С учетом этого (2) примет вид
В результате нам удалось доказать формулу скалярного произведения через координаты:
Задание. Перемножьте скалярно вектораa и b, если определены их координаты:
Ответ: а) 23; б) 0; в) 5.
Видео:8. Медиана треугольника и её свойства.Скачать
Определение перпендикулярности векторов и прямых
Напомним, что скалярное произведение оказывается нулевым исключительно в случае перпендикулярности векторов. Это позволяет использовать его для проверки перпендикулярности векторов.
Задание. Проверьте, являются ли перпендикулярными вектора:
Решение. В каждом случае мы должны скалярно перемножить пару векторов. Если результат окажется нулевым, то можно сделать вывод о перпендикулярности векторов. В противном случае они не перпендикулярны. Первый вектор будет обозначать буквой а, а второй – буквой b:
Ответ: а) да; б) нет; в) да; г) нет.
Задание. При каком значении переменной х вектора а и b<x; – 6> окажутся перпендикулярными?
Решение. Перемножим скалярно вектора и получим некоторое выражение с переменной x:
Найдем, при каком х это выражение обращается в нуль, то есть вектора становятся перпендикулярными:
Задание. Определите, перпендикулярны ли прямые АВ и CD, если даны координаты точек: А(3; 8), В(4; 10), С(7;12) и D(5;13).
Решение. В этой задаче сначала надорассчитать координаты векторов АВ и CD по координатамих начальной и конечной точки:
Мы вычислили координаты векторов: АВ и CD. Теперь мы можем проверить их перпендикулярность, скалярно перемножив вектора:
Мы получили ноль. Это означает, что АВ и CD – перпендикулярные вектора. Значит, и прямые, на которых они лежат, также перпендикулярны.
Задание. Перпендикулярны ли друг другу прямые, задаваемые уравнениями
Названия точкам в данном примере присвоены произвольно. На следующем шаге по координатам точек мы находим координаты векторов, лежащих на исследуемых прямых:
Полученный ноль показывает, что исходные прямые перпендикулярны.
В случае, когда прямые заданы уравнениями, необязательно проделывать столь длительные вычисления для определения их перпендикулярности. Есть теорема, сокращающая объем вычислений.
Докажем это утверждение. Пусть две прямые заданы уравнениями
Найдем какие-нибудь точки этих прямых. Для этого подставим в уравнения значения х = 0 и х = 1:
Прямые окажутся перпендикулярными исключительно в том случае, если это выражение будет нулевым. Это условие перпендикулярности можно записать как уравнение:
В результате мы получили доказываемую нами формулу.
Задание. Проверьте, какие из этих пар прямых перпендикулярны:
Решение. В каждом случае надо просто перемножить угловые коэффициенты прямых, то есть числа, стоящие перед переменной х. Другие числа в этих уравнениях (свободные коэффициенты) никак не влияют на перпендикулярность. Если вычисленное произведение окажется равным (– 1), то из этого будет вытекать перпендикулярность прямых.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Вычисление угла между векторами
Мы научились по координатам векторов определять, перпендикулярны ли они. Однако в более общем случае можно рассчитать угол и между двумя неперпендикулярными векторами.
В самом деле, по известным координатам векторов легко как рассчитать длину каждого из них, так и скалярно перемножить вектора. Тогда из формулы скалярного произведения можно выразить значение косинуса угла между векторами:
Зная же косинус, можно рассчитать и сам угол, используя специальные таблицы либо функцию арккосинуса на калькуляторе.
Задание. Вычислите угол между векторами а и b.
Решение. Сначала рассчитываем длины векторов:
Задание. Точки А(2; 8), В(– 1; 5) и С(3; 1) соединили отрезками и получили ∆АВС. Вычислите угол ∠А в ∆АВС.
Решение.∠А данного треугольника представляет собой угол между двумя векторами АВ и АС. Вычислим координаты этих векторов:
Осталось лишь с помощью калькулятора найти сам ∠А:
Видео:Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать
Свойства скалярного произведения
Существует несколько важных свойств скалярного произведения. Эти свойства очень схожи с законами алгебры, которые используются при работе с обычными числами.
Переместительный закон легко доказать, опираясь только на определение операции скалярного произведения:
Задание. Известно, что угол между векторами a и с составлет 60°, так же как и угол между векторами b и с. Определены и длины векторов:
Задание. Найдите скалярное произведение векторов p и q, если
Решение. Сначала надо перемножить вектора и раскрыть при этом скобки также, как они раскрываются при перемножении обычных чисел:
Примечание. Иногда скалярное произведение вектора на самого себя именуют скалярным квадратом.
Тогда выражение (1) примет вид:
В сегодняшнем уроке мы узнали, что такое скалярное произведение. Оно имеет много приложений в физике и других науках, в частности, с его помощью вычисляется работа. В геометрии оно помогает вычислять углы между векторами, а значит, и между прямыми. В будущем, при более углубленном изучении геометрии, вы узнаете о существовании других типов произведений векторов – векторном и смешанном.
Видео:Аналитическая геометрия, 2 урок, Скалярное произведениеСкачать
Скалярное произведение векторов и его свойства
Скалярным произведением двух ненулевых векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если хотя бы один из двух векторов нулевой, то угол между ними не определён, а скалярное произведение считается равным нулю. Скалярное произведение векторов и обозначается
где — величина угла между векторами и .
Скалярное произведение вектора самого на себя называется скалярным квадратам.
Пример 1.13. Найти скалярные произведения , если известно, что , угол между векторами и равен , , а вектор образует с вектором угол (рис.1.36).
Решение. По определению находим
Так как векторы и противоположно направленные, то угол между векторами и равен . Поэтому
Угол между противоположно направленными векторами и равен , поэтому
Вектор ортогонален вектору (и вектору ), так как величина угла между ними равна , а . Поэтому .
Угол между векторами и равен , поэтому .
Видео:СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ 9 класс АтанасянСкачать
Геометрический смысл скалярного произведения векторов
Рассмотрим ортогональную проекцию ненулевого вектора на ось, задаваемую вектором (рис. 1.37). Согласно пункту 1 замечаний 1.4, алгебраическое значение длины проекции равно произведению длины вектора на косинус угла между векторами и :
Умножив обе части этого равенства на , получим . Сравнивая с (1.7), делаем вывод: скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором :
Эта формула остается справедливой и в случае , так как .
Аналогично (см. пункт 2 замечаний 1.4) доказывается формула и делается вывод о том, что скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
Видео:Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать
Алгебраические свойства скалярного произведения
Для любых векторов и любого действительного числа :
4. , причем из равенства следует, что .
Первое свойство определяет симметричность скалярного произведения, второе и третье — аддитивность и однородность по первому множителю, четвертое свойство — неотрицательность скалярного квадрата. Эти свойства аналогичны свойствам произведения чисел: первое свойство соответствует закону коммутативности умножения чисел, второе — закону дистрибутивности умножения по отношению к сложению, третье — закону ассоциативности умножения. Поэтому рассматриваемая операция и называется произведением векторов. Поскольку ее результатом является число (скаляр), то такое произведение векторов называется скалярным.
Свойства 1 и 4 следуют непосредственно из определения. Докажем, например, аддитивность скалярного произведения по первому множителю (свойство 2): . Если вектор — нулевой, то все скалярные произведения равны нулю по определению, т.е. для имеем верное равенство. Пусть . Учитывая, что проекция суммы векторов равна сумме проекций (то же относится и к алгебраическим значениям длин ортогональных проекций), можно записать .
Умножая обе части на , получаем .
Учитывая (1.8), последнее равенство равносильно , что и требовалось доказать. Однородность скалярного произведения по первому множителю (свойство 3) доказывается аналогично, используя соответствующее свойство ортогональных проекций векторов.
1. Свойства аддитивности и однородности скалярного произведения означают линейность скалярного произведения по первому множителю :
для любых векторов и любых действительных чисел и .
2. В силу коммутативности скалярное произведение линейно и по второму множителю, т.е. линейно по любому множителю .
3. Для любых векторов справедливо неравенство Коши — Буняковского
Это неравенство выражает условие ограниченности косинуса угла между ненулевыми векторами. В самом деле, поскольку , то из (1.7)
и, следовательно, справедливо доказываемое неравенство. Заметим, что неравенство Коши — Буняковского выполняется как равенство только для коллинеарных векторов, т.е. при .
4. Из неравенства Коши — Буняковского следует неравенство треугольника (длина стороны треугольника меньше суммы длин двух других его сторон и больше модуля их разности):
Докажем последнее неравенство . Используя неравенство , которое следует из неравенства Коши — Буняковского, оценим скалярный квадрат суммы векторов:
т.е. , что равносильно доказываемому неравенству.
Видео:🔥 Свойства МЕДИАНЫ #shortsСкачать
Геометрические свойства скалярного произведения
С помощью скалярного произведения можно находить основные метрические величины: длины отрезков (или, что то же самое, длины векторов) и величины углов.
1. Длина вектора а находится по формуле: .
2. Величина угла между ненулевыми векторами находится по формуле:
Отсюда заключаем, что:
— ненулевые векторы и перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю: ;
— угол между ненулевыми векторами и острый тогда и только тогда, когда их скалярное произведение положительно;
— угол между ненулевыми векторами и тупой fracright)» png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAAmBAMAAAClsdF/AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAZvHEYFEYuAx8CFysX6e75gAAAHwSURBVDjLY2AgCbCY4JBgFBQUZGBwcoALOE/ArtDpHRAUMLAjDLLBYaJRsGpTjAMDoy5MhNUAu0r2AuGNC0EMjgNQkX0JuDywQ/ohWMsSKF8Zp1eD2MBmMjZBuNzPcSlkXM4GNpOhbgOYYlqISyX7E56XYIZfAJiSUsClksOA7SmYIdwIpvIKcKnkTWC4BmZAjY7bgNNHAlCa7Q2YshMgGN2Mb8HkYhTBMGz6GFeARBkfowi6mmNRygi2l+0RiD2NgaH4JljQ1cYBU+k9kF8gAWHCwNTcATHNxxRTaVwCTCX7AYZaBw9o4hM33YBbpbADowkDMyyZijeBTGVRAgN1NJUMYgUMEjC/iBmBVIpgVSkhwLuB4RDcSLDtjFhtlyjwEBBvgTkTn4/YHivnWECc6dqKLZRActzgkJ/87lUIoZBnXAwm10BNUkdW6BMDCS9GSFCD1Yu9xhLdnOaHlyOlEIY4kBuYFmBLyRNY1oEdz/kGkZKFL2BROW8Jg14AUkoG5w5OLB5m2LWQIQ5cFvA2EshxjAIMeuBCwQ+S1bif4SnbVjkg5WJG3CUDA9NK5JIBT2nDUAX2OttqAiUY0J+d4OwpASvBGExxqZzswAbySyzBkpazLS0JGJ5sJgRLb2dgkQz0w2YHggXCZGNjY7h1ACJhdRVcflHKAAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> тогда и только тогда, когда их скалярное произведение отрицательно.
3. Алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
4. Ортогональная проекция вектора на ось, задаваемую вектором .
Если ось задается единичным вектором , то .
Свойства 1 и 2 следуют непосредственно из определения скалярного произведения. Третье и четвертое свойства вытекают из геометрического смысла скалярного произведения (см. (1.8)) и п.1 замечаний 1.4.
Пример 1.14. Доказать тождества
Решение. Используя коммутативность и линейность скалярного произведения, запишем равенства
Заменяя скалярные квадраты векторов квадратами их длин (см. геометрическое свойство 1), получаем
Если из первого равенства вычесть второе, то придем к тождеству (а). Если же сложить оба равенства, то получим тождество (б).
Доказанные равенства выражают следующие свойства параллелограмма, построенного на векторах и ( и — его диагонали):
а) скалярное произведение векторов равно одной четвертой от разности квадратов диагоналей параллелограмма, построенного на множителях;
б) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
🎬 Видео
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Скалярное произведение векторов. Практическая часть. 9 класс.Скачать