Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).
Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.
На рисунке 1 медианой является отрезок BD .
Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).
Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),
и заметим, что (см. раздел нашего справочника «Площадь треугольника»)
Поскольку отрезок BD является медианой, то
что и требовалось доказать.
Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.
Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).
Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).
Теперь рассмотрим четырёхугольник FEDG (рис. 5).
Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,
Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,
Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.
Следствие . Все три медианы треугольника пересекаются в одной точке.
Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).
Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.
Определение . Точку пересечения медиан треугольника называют центроидом треугольника.
Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).
Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Медианы треугольника
Медиана треугольника — это отрезок, который соединяет вершину треугольника с серединой противоположной стороны. На Рис.1 АМ — медиана треугольника АВС (соединяет вершину А с серединой стороны ВС точкой М, т.е. ВМ = МС).
Любой треугольник имеет три медианы. На Рис.2, АМ, ВК, СD — медианы треугольника АВС. Медиана АМ соединяет вершину А с серединой стороны ВС — точкой М (ВМ = МС), медиана ВК соединяет вершину В с серединой стороны АС — точкой К (ВК = КС), медиана СD соединяет вершину С с серединой стороны АВ — точкой D (АD = DB).
Замечательное свойство медиан треугольника: в любом треугольнике медианы пересекаются в одной точке. На Рис.2 медианы АВС пересекаются в точке О. При этом, точка О делит каждую медиану в отношении 2 : 1, считая от вершины, т.е. АО : ОМ = ВО : ОК = СО : DO = 2 : 1.
Поделись с друзьями в социальных сетях:
Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
Определение и свойства медианы треугольника
В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Определение медианы треугольника
Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.
Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Свойства медианы
Свойство 1 (основное)
Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.
В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:
Свойство 2
Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.
Свойство 3
Три медианы делят треугольник на 6 равновеликих треугольников.
Свойство 4
Наименьшая медиана соответствует большей стороне треугольника, и наоборот.
- AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
- AB – самая короткая сторона, следовательно, медиана CD – самая длинная.
Свойство 5
Допустим, известны все стороны треугольника (примем их за a, b и c).
Длину медианы ma, проведенную к стороне a, можно найти по формуле:
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Примеры задач
Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.
Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S△ = 5 см 2 ⋅ 6 = 30 см 2 .
Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.
Решение
Воспользуемся формулой, приведенной в свойстве 5:
💥 Видео
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Вся геометрия за 45 минут | Геометрия 7-9 классыСкачать
7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Произведение многочленов. Разложение многочлена на множители способом группировки. 7 класс.Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Самый короткий тест на интеллект Задача Массачусетского профессораСкачать
Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать
Признаки равенства треугольников. 7 класс.Скачать
№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать
8. Медиана треугольника и её свойства.Скачать
Первый признак равенства треугольников. 7 класс.Скачать
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Задача про медиану треугольника и периметры. Геометрия 7 класс.Скачать
Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Задача про медиану треугольника. Геометрия 7 класс.Скачать