В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.
Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Свойства медианы в прямоугольном треугольнике
- Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
- Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
- Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Доказательства свойств
Первое свойство
Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.
Доказательство:
- Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).
Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).
Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).
DE || AB и DE = AB / 2.
FG || AB и FG = AB / 2
FX=XE, GX=XD
Что и требовалось доказать.
Второе свойство
Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.
Доказательство:
- Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).
Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).
Что и требовалось доказать.
Третье свойство
Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.
Доказательство:
- Опишем вокруг прямоугольного треугольника ABC окружность.
Что и требовалось доказать.
Понравилась статья, расскажите о ней друзьям:
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Медиана треугольника является его биссектрисой
Выясним, какой вывод следует из того, что медиана треугольника является его биссектрисой?
Если медиана треугольника является его биссектрисой, то этот треугольник — равнобедренный.
Дано:
CK — медиана и биссектриса
Проведем анализ задачи.
На основе каких данных можно утверждать, что треугольник — равнобедренный? Если у него две стороны равны либо два угла равны. Значит, нам нужно доказать либо равенство сторон AC и BC, либо равенство углов A и B. Любое из этих равенств следует из равенства треугольников.
В треугольниках AKC и BKC биссектриса CK образует равные углы ACK и BCK, медиана CK — равные отрезки AK и BK. Сторона CK — общая.
Что мы имеем? Две стороны, но нет угла между ними. Ни к одной из сторон нет двух прилежащих углов. Признаки равенства треугольников применить не можем.
В таком случае придется выполнять дополнительные построения.
На луче CK отложим отрезок KE так, чтобы KE=CK, и точки A и E соединим отрезком. Получили еще один треугольник AKE.
Мы можем доказать, что этот треугольник равен треугольнику BKC (по двум сторонам и углу между ними).
Из равенства этих треугольников следует равенство сторон AE и BC и углов AEK и BCK.
Получается, что в треугольнике ACE имеется два равных угла AEK и ACK. Поэтому он — равнобедренный, откуда легко доказывается и равенство сторон AC и ВС. Осталось записать доказательство.
На луче CK отложим отрезок KE, KE=CK.
Рассмотрим треугольники AKE и BKC:
1) AK=BK (так как CK — медиана по условию)
2) KE=CK (по построению)
3) ∠AKE=∠BKC (как вертикальные).
Следовательно, ∆ AKE=∆ BKC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AE=BC и соответствующих углов: ∠AEK=∠BCK.
По условию, ∠BCK=∠AСK. Поэтому ∠AEK=∠AСK.
Таким образом получили, что в треугольнике ACE два угла равны. Значит, ∆ ACE — равнобедренный с основанием CE (по признаку). Следовательно, его боковые стороны равны: AE=AC.
А поскольку уже доказали, что AE=BC, то и AС=BС. Поэтому ∆ ABC — равнобедренный с основанием AB (по определению).
Что и требовалось доказать.
Если в треугольнике совпадают медиана и биссектриса, проведенные к каждой из сторон, то такой треугольник — равносторонний (каждые две его стороны равны между собой, значит, равны все три стороны).
Видео:8. Медиана треугольника и её свойства.Скачать
Все формулы медианы прямоугольного треугольника
Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c , пополам.
Медиана в прямоугольном треугольнике ( M ), равна, радиусу описанной окружности ( R ).
M — медиана
R — радиус описанной окружности
O — центр описанной окружности
с — гипотенуза
a, b — катеты
α — острый угол CAB
Медиана равна радиусу и половине гипотенузы, ( M ):
Формула длины через катеты, ( M ):
Формула длины через катет и острый угол, ( M ):
🔍 Видео
ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикулярСкачать
ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
Свойство биссектрисы треугольника с доказательствомСкачать
Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать
КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольникеСкачать
Задание 9 ОГЭ от ФИПИСкачать
Высота, медиана, биссектриса треугольника. Как построить в треугольнике. Геометрия 7 классСкачать
Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать
6 задания ЕГЭ по математике. Угол между медианой и биссектрисой в прямоугольном треугольнике.Скачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать
Медиана в прямоугольном треугольникеСкачать
Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать
Формула для биссектрисы треугольникаСкачать
Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать