Ключевые слова: основные линии треугольника, медиана, биссектриса, высота, средния линия, серединные перпендикуляры
Рассмотрим произвольный треугольник ABC:
a, b, c — стороны треугольника
$$m_a$$ — медиана к стороне a угла A
$$h_a$$ — высота к стороне a угла A
$$l_a$$ — биссектриса к стороне a угла A
Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.
Свойства медиан треугольника
- Медиана разбивает треугольник на два треугольника одинаковой площади.
- Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
- Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
Биссектриса угла — это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам.
Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
- Биссектриса угла — это геометрическое место точек, равноудаленных от сторон этого угла.
- Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам.
- Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.
Свойства высот треугольника
- В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
- В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
- Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон
- Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.
Свойства серединных перпендикуляров треугольника
- Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
- Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника
- Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
- Please wait.
- We are checking your browser. mathvox.ru
- Why do I have to complete a CAPTCHA?
- What can I do to prevent this in the future?
- Определение и свойства медианы треугольника
- Определение медианы треугольника
- Свойства медианы
- Свойство 1 (основное)
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Примеры задач
- 📹 Видео
Видео:Биссектриса перпендикулярна медианеСкачать
Please wait.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
We are checking your browser. mathvox.ru
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:Длина медианы треугольникаСкачать
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6d36423a5d3f4989 • Your IP : 85.95.179.65 • Performance & security by Cloudflare
Видео:Построение медианы в треугольникеСкачать
Определение и свойства медианы треугольника
В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.
Видео:№126. Прямая MB перпендикулярна к сторонам АВ и ВС треугольника ABC. Определите вид треугольникаСкачать
Определение медианы треугольника
Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.
Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Свойства медианы
Свойство 1 (основное)
Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.
В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:
Свойство 2
Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.
Свойство 3
Три медианы делят треугольник на 6 равновеликих треугольников.
Свойство 4
Наименьшая медиана соответствует большей стороне треугольника, и наоборот.
- AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
- AB – самая короткая сторона, следовательно, медиана CD – самая длинная.
Свойство 5
Допустим, известны все стороны треугольника (примем их за a, b и c).
Длину медианы ma, проведенную к стороне a, можно найти по формуле:
Видео:8. Медиана треугольника и её свойства.Скачать
Примеры задач
Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.
Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S△ = 5 см 2 ⋅ 6 = 30 см 2 .
Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.
Решение
Воспользуемся формулой, приведенной в свойстве 5:
📹 Видео
№148. Прямая АК перпендикулярна к плоскости правильного треугольника ABC, М — середина стороны ВС.Скачать
Формула нахождения медианы треугольника по известным сторонам треугольника.Скачать
Формулы для медианы треугольникаСкачать
ОГЭ, задание #26, вариант-8Скачать
🔥 Свойства МЕДИАНЫ #shortsСкачать
2.19.1. Планиметрия. Гордин Р.К.Скачать
ВЫСОТА МЕДИАНА БИССЕКТРИСА треугольника 7 класс геометрия АтанасянСкачать
9 класс. Геометрия.Скачать
Высота медиана биссектрисаСкачать
Геометрия 7. Треугольники. Медиана и биссектриса треугольника. Определение и свойства. Решение задачСкачать
Геометрия В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длинуСкачать
В треугольнике ABC проведена медиана BM, на стороне AB взята точка K так, что AK = 1/3 AB. РЕШЕНИЕ!Скачать