Какие из следующих утверждений верны?
1) Любые два прямоугольных треугольника подобны.
2) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
3) Стороны треугольника пропорциональны косинусам противолежащих углов.
4) Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Любые два прямоугольных треугольника подобны.» — неверно, так как нет второго равного угла.
2) «Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.» — верно, по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов.
3) «Стороны треугольника пропорциональны косинусам противолежащих углов.» — неверно, по теореме синусов стороны треугольника пропорциональны синусам противолежащих сторон.
4) «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.» — верно, по теореме косинусов.
- Прямоугольный треугольник: Признаки Равенства и Подобия
- Определение
- Свойства прямоугольного треугольника
- Признаки равенства прямоугольных треугольников
- Признаки прямоугольного треугольника
- Признаки подобия прямоугольных треугольников
- Задание №20 ОГЭ по математике
- Анализ геометрических высказываний
- Разбор типовых вариантов задания №20 ОГЭ по математике
- Первый вариант задания
- Второй вариант задания
- Третий вариант задания
- Демонстрационный вариант ОГЭ 2019
- Четвертый вариант задания
- Пятый вариант задания
- 🎦 Видео
Видео:Подобие в прямоугольных треугольникахСкачать
Прямоугольный треугольник: Признаки Равенства и Подобия
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Определение
Прямоугольный треугольник — это треугольник, в котором один из углов прямой.
Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.
Катет в прямоугольном треугольнике — это две стороны прилежащие к прямому углу.
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Свойства прямоугольного треугольника
В прямоугольном треугольнике:
- Сумма острых углов 90˚.
- Катет, противолежащий углу в 30˚, равен половине гипотенузы.
- Медиана, проведенная к гипотенузе, равна ее половине.
- Центр описанной окружности — середина гипотенузы.
Формулы:
- Площадь прямоугольного треугольника равна
половине произведения катетов: - Радиус описанной окружности около прямоугольного
треугольника равен половине гипотенузы: - Радиус вписанной окружности в прямоугольный треугольник
выражается следующим образом: - Квадрат гипотенузы равен сумме квадратов катетов:
Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Признаки равенства прямоугольных треугольников
С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.
- По двум катетам:
Если два катета одного прямоугольного треугольника соответственно
равны двум катетам другого прямоугольного треугольника,
то такие треугольники равны. - По катету и гипотенузе:
Если катет и гипотенуза одного прямоугольного треугольника соответственно
равны катету и гипотенузе другого прямоугольного треугольника,
то такие треугольники равны. - По гипотенузе и острому углу:
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
равны гипотенузе и острому углу другого прямоугольного треугольника,
то такие треугольникиравны. - По катету и острому углу:
Если катет и острый угол одного прямоугольного треугольника соответственно
равны катету и острому углу другого прямоугольного треугольника,
то такие треугольники равны.
Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать
Признаки прямоугольного треугольника
С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.
- По теореме Пифагора:
Если квадрат стороны равен сумме квадратов двух других сторон,
то треугольник прямоугольный. - По центру описанной окружности:
Если центр описанной окружности лежит на стороне треугольника,
то треугольник прямоугольный. - По медиане:
Если медиана треугольника равна половине стороны, к которой она проведена,
то треугольник прямоугольный. - По площади:
Если площадь треугольника равна половине произведения двух его сторон,
то треугольник прямоугольный. - По радиусу описанной окружности:
Если радиус описанной окружности равен половине,
то треугольник прямоугольный.
Видео:Подобие прямоуголных треугольников. 1 признак.Скачать
Признаки подобия прямоугольных треугольников
С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.
Видео:Подобие прямоугольных треугольников и его применениеСкачать
Задание №20 ОГЭ по математике
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
Анализ геометрических высказываний
В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.
Разбор типовых вариантов задания №20 ОГЭ по математике
Первый вариант задания
Какие из следующих утверждений верны?
- Все диаметры окружности равны между собой.
- Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
- Любые два равносторонних треугольника подобны.
Решение:
Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.
Второй вариант задания
Какие из следующих утверждений верны?
- Все высоты равностороннего треугольники равны.
- Существуют три прямые, которые проходят через одну точку.
- Если диагонали параллелограмма равны, то он является ромбом.
Решение:
Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.
Третий вариант задания
Какие из следующих утверждений верны?
- Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
- Любой прямоугольник можно вписать в окружность.
- Через заданную точку плоскости можно провести единственную прямую.
Решение:
Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.
Демонстрационный вариант ОГЭ 2019
Укажите номера верных утверждений.
- Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
- Треугольник со сторонами 1, 2, 4 существует.
- Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
- В любом параллелограмме диагонали равны.
Решение:
Проанализируем каждое из утверждений:
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Да, такое утверждение в геометрии есть, с дополнением » и только одну» :
«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»
2) Треугольник со сторонами 1, 2, 4 существует.
Для существования треугольника должно выполняться следующее правило:
Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2
Четвертый вариант задания
Какое из следующих утверждений верно?
1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.
2) Смежные углы всегда равны.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
Решение:
Проанализируем каждое утверждение.
1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.
2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.
3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.
Пятый вариант задания
Какое из следующих утверждений верно?
1) Если угол острый, то смежный с ним угол также является острым.
2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Решение:
Выполняем анализ утверждений.
1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.
2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.
3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.
🎦 Видео
Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Подобие прямоугольных треугольников. Среднее геометрическое (пропорциональное). Геометрия 8-9 классСкачать
Wow-ошибки в математике | Математика TutorOnlineСкачать
ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать
ВСЕ правила и формулы ПЛАНИМЕТРИИСкачать
Этой задачей русские дети 10 лет мучили американцев. Американцы не понимали, что делают не такСкачать
8 класс, 20 урок, Определение подобных треугольниковСкачать
Только половина класса смогла решить эту задачуСкачать
✓ Все сюжеты по планиметрии из ЕГЭ за 50 минут | ЕГЭ. Задание 16. Профильный уровень | Борис ТрушинСкачать