Какие из следующих утверждений верны?
1. Две прямые, перпендикулярные третьей прямой, перпендикулярны.
2. Всякий равносторонний треугольник является остроугольным.
3. Любой квадрат является прямоугольником.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Рассмотрим каждое из утверждений:
1. Две прямые, перпендикулярные третьей прямой, перпендикулярны — неверно, они параллельны.
2. Всякий равносторонний треугольник является остроугольным — верно, в равностороннем треугольнике углы по 60 градусов, следовательно, он остроугольный.
3. Любой квадрат является прямоугольником — верно, т. к. квадрат удовлетворяет всем признакам прямоугольника.
- Задание №20 ОГЭ по математике
- Анализ геометрических высказываний
- Разбор типовых вариантов задания №20 ОГЭ по математике
- Первый вариант задания
- Второй вариант задания
- Третий вариант задания
- Демонстрационный вариант ОГЭ 2019
- Четвертый вариант задания
- Пятый вариант задания
- Плоские геометрические фигуры: свойства и основные формулы
- Четырёхугольник
- Основные свойства:
- Квадрат
- Основные формулы:
- Свойства:
- Прямоугольник
- Основные формулы:
- Свойства:
- Параллелограмм
- Определения:
- Основные формулы:
- Свойства:
- Ромб
- Основные формулы:
- Свойства:
- Трапеция
- Определения:
- Основные формулы:
- Свойства:
- Треугольник
- Определения:
- Основные формулы:
- Свойства:
- Окружность
- Определения:
- Основные формулы:
- 📺 Видео
Видео:Любой квадрат является прямоугольником. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Задание №20 ОГЭ по математике
Видео:№1080. Докажите, что любой правильный четырехугольник является квадратом.Скачать
Анализ геометрических высказываний
В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.
Разбор типовых вариантов задания №20 ОГЭ по математике
Первый вариант задания
Какие из следующих утверждений верны?
- Все диаметры окружности равны между собой.
- Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
- Любые два равносторонних треугольника подобны.
Решение:
Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.
Второй вариант задания
Какие из следующих утверждений верны?
- Все высоты равностороннего треугольники равны.
- Существуют три прямые, которые проходят через одну точку.
- Если диагонали параллелограмма равны, то он является ромбом.
Решение:
Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.
Третий вариант задания
Какие из следующих утверждений верны?
- Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
- Любой прямоугольник можно вписать в окружность.
- Через заданную точку плоскости можно провести единственную прямую.
Решение:
Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.
Демонстрационный вариант ОГЭ 2019
Укажите номера верных утверждений.
- Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
- Треугольник со сторонами 1, 2, 4 существует.
- Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
- В любом параллелограмме диагонали равны.
Решение:
Проанализируем каждое из утверждений:
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Да, такое утверждение в геометрии есть, с дополнением » и только одну» :
«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»
2) Треугольник со сторонами 1, 2, 4 существует.
Для существования треугольника должно выполняться следующее правило:
Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2
Четвертый вариант задания
Какое из следующих утверждений верно?
1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.
2) Смежные углы всегда равны.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
Решение:
Проанализируем каждое утверждение.
1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.
2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.
3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.
Пятый вариант задания
Какое из следующих утверждений верно?
1) Если угол острый, то смежный с ним угол также является острым.
2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Решение:
Выполняем анализ утверждений.
1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.
2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.
3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать
Плоские геометрические фигуры: свойства и основные формулы
В статье описываются геометрические фигуры: определение, основные свойства и формулы.
Плоские геометрические фигуры:
Четырехугольник (общее для всех четырехугольников)
Квадрат
Прямоугольник
Параллелограмм
Трапеция
Треугольник
Окружность
Геометрические фигуры — это любое сочетание точек, линий и поверхностей. Геометрические фигуры разделяются на плоские и объемные.
Плоские геометрические фигуры — это фигуры, все точки которых лежат на одной плоскости. Объемные геометрические фигуры — это фигуры, не все точки которых лежат на одной плоскости.
Видео:Любой квадрат является ромбом. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Четырёхугольник
Четырёхугольник – это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.
Основные свойства:
- Сумма углов четырёхугольника равна 360°
- Не существует четырёхугольников, у которых все углы острые или все углы тупые.
- Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов.
- Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон.
В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны. Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.
Четырёхугольник можно описать окружностью, если сумма его противолежащих углов равна 180°.Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.
Видео:9 класс, 15 урок, Решение треугольниковСкачать
Квадрат
Квадрат – правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Основные формулы:
Периметр: P=4a, где P-периметр, a-сторона
Площадь: S=a 2 или S=d 2 /2
Сторона и диагональ связаны соотношениями: a=d/√2, d=a√2
Радиус описанной окружности: R=d или R=a/√(2)
Радиус вписанной окружности: r=a/2
где a-сторона, d-диагональ, P-периметр, S-площадь
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(2) – корень квадратный из 2.
Свойства:
- Все стороны равны, все углы равны и составляют 90°;
- Диагонали квадрата равны и перпендикулярны;
- У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей;
- Квадрат является одновременно частным случаем ромба и прямоугольника.
Видео:Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать
Прямоугольник
Прямоугольник – четырехугольник, у которого все углы прямые.
Основные формулы:
Периметр: P=(a+b)*2
Площадь по сторонам: S = a*b
Площадь по диагонали и углу между ними: S = d²* sin γ. / 2
Стороны и диагональ связаны соотношением: d=√(a 2 +b 2 )/2 (теорема Пифагора)
Радиус описанной окружности: R= √(a 2 +b 2 )/2 (теорема Пифагора)
где a, b – длины сторон прямоугольника, d-диагональ, P-периметр, S-площадь
γ – угол между диагоналями
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(a 2 +b 2 ) – корень квадратный из (a 2 +b 2 ).
Свойства:
- Диагонали прямоугольника равны и делятся точкой пересечения пополам.
- Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Параллелограмм
Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.
Определения:
Высота параллелограмма – это перпендикуляр, проведённый из вершины параллелограмма к противоположной стороне.
Основные формулы:
Стороны и диагональ связаны соотношением: (d1) 2 +(d2) 2 =(a 2 +b 2 )*2
Периметр: P=(a+b)*2
Площадь по стороне и высоте: S = a*h
S (Площадь) по двум сторонам и углу между ними: S=a*b*sin α
S (Площадь) по двум диагоналям и углу между ними: S=(d1*d2)/2*sin γ
где a, b – длины сторон, d1, d2 –диагонали, P-периметр, S-площадь,
h-высота, проведенная к противоположной стороне
α – угол между сторонами параллелограмма,
γ – угол между диагоналями параллелограмма (острый).
Свойства:
- У параллелограмма противоположные стороны равны и противоположные углы равны.
- Сумма любых двух соседних углов параллелограмма равна 180°.
- Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- Каждая диагональ делит параллелограмм на два равных треугольника.
- Две диагонали параллелограмма делят его на четыре равновеликих треугольника (равны площади всех 4-х треугольников)
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
- Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать
Ромб
Ромб – это параллелограмм, у которого все стороны равны.
Основные формулы:
Периметр: P=4*a
Площадь по стороне и высоте: S=a*h
Площадь по диагоналям: S = (d1*d2)/2
Радиус окружности, вписанной в ромб: r=h/2 или r =(d1*d2)/4a
Площадь по стороне и радиусу вписанной окружности: S=2*a*r
Площадь по стороне и углу: S = a 2 · sin α
где a – длина стороны, d1, d2 –диагонали, P-периметр, S-площадь,
h -высота, проведенная к противоположной стороне
α – угол между сторонами ромба
Свойства:
- Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
- В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей. Радиус окружности: r=h/2 или r = d1*d2/4a.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Трапеция
Трапеция – четырёхугольник, у которого только две противолежащие стороны параллельны.
Определения:
- Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
- Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.
- Средняя линия (первая средняя линия) трапеции – отрезок, который соединяет середины боковых сторон данной трапеции.Средняя линия трапеции параллельна её основаниям и равна их полусумме.
- Средняя линия (вторая средняя линия) – отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей.
- Равнобокая трапеция – трапеция,у которой боковые стороны равны (c=d). У равнобокой трапеции:диагонали равны, углы при основании равны, сумма противолежащих углов равна 180°.Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
- Прямоугольная трапеция – трапеция, у которой одна из её боковых сторон перпендикулярна основаниям.
Основные формулы:
Периметр: P=a+b+c+d
Площадь определить: S=h*(a+b)/2
Стороны и диагональ равнобокой трапеции: d² = ab+c²
Радиус вписанной окружности: r = h/2
где a,b – основания, c,d – боковые стороны (с – боковые стороны в случае, если трапеция равнобокая), d1, d2 –диагонали,
P-периметр, S-площадь, h -высота, проведенная к противоположной стороне
Свойства:
В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон (a+b=c+d). Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.
Видео:Как я использую дюймы в пэчворке и не пересчитываюСкачать
Треугольник
Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).
Определения:
- Углами (внутренними углами) треугольника называются три угла, каждый из которых образован лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
- Высота треугольника – перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны
- Медиана треугольника– отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
- Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне
- Равные треугольники – треугольники, у которых соответствующие стороны равны и соответствующие углы равны
- Равнобедренный треугольник– треугольник, у которого две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
- Равносторонний или правильный треугольник – треугольник, у которого все стороны равны.
- Прямоугольный треугольник – треугольник, у которого есть прямой угол. Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.
Основные формулы:
Периметр: P=a+b+c
Площадь по стороне и высоте: S=(a*h)/2
Площадь: по сторонам и углу между ними: S=(a*b)/2* sin γ
по трем сторонам и радиусу описанной окружности: S=(a*b*c)/4R
по трем сторонам и радиусу вписанной окружности: S=(a+b+c)/2*r
Площадь прямоугольного треугольника: S=(a*b)/2
Стороны прямоугольного треугольника: c 2 =a 2 +b 2 (Теорема Пифагора)
где a,b, c – стороны (a,b –катеты , с – гипотенуза в случае прямоугольного треугольника)
d1, d2 –диагонали, h -высота, проведенная к противоположной стороне,
P-периметр, S-площадь, γ – угол между сторонами a и b
r – радиус вписанной окружности, R – радиус описанной окружности
Свойства:
- В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол.
- Сумма углов треугольника равна 180°:
- Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон: |a-b| 2 =a 2 +b 2 (Теорема Пифагора).В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.
Видео:Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать
Окружность
Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.
Определения:
- Радиус – отрезок, который соединяет центр окружности с любой её точкой.
- Хорда – отрезок, который соединяет какие-либо две точки окружности (AB).
- Диаметр – хорда, проходящая через центр окружности(d). Диаметр – наибольшая хорда окружности. Наименьшей хорды окружности не существует.
- Касательная – прямая, которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку (E)
- Секущая – прямая, которая пересекает окружность в двух различных точках.
Основные формулы:
Длина окружности: L = 2πR
Площадь круга: S = π*r 2 или S = π*d 2 /4
где π = 3,14 (3,1415926535) – величина постоянная,
где r-радиус, d –диаметр, L – длина окружности, S-площадь.
📺 Видео
Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Кто Первый Пройдет Гигантскую Геометрическую Игру Получит 1000$Скачать
Самый простой способ нахождения площадиСкачать
Как найти площадь треугольника без формулы?Скачать
Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
Периметр треугольника. Как найти периметр треугольника?Скачать
✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать