Любой треугольник 360 градусов

Любой треугольник 360 градусов

Любой треугольник 360 градусов

Какие из следующих утверждений верны?

1) Треугольника со сторонами 1, 2, 4 не существует.

2) Сумма углов любого треугольника равна 360 градусам.

3) Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Треугольника со сторонами 1, 2, 4 не существует» — верно, сторона треугольника не может быть больше суммы двух других.

2) «Сумма углов любого треугольника равна 360 градусам» — неверно, сумма углов любого треугольника равна 180 градусам.

3) «Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности» — верно, центр описанной окружности лежит в точке пересечения серединных перпендикуляров.

Видео:Сумма углов любого треугольника равна 360°. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Сумма углов любого треугольника равна 360°. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Внешний угол треугольника

Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.

Любой треугольник 360 градусов

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

Любой треугольник 360 градусов

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Любой треугольник 360 градусов

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

Из этого следует, что

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Видео:Почему сумма углов треугольника 180 градусов?Скачать

Почему сумма углов треугольника 180 градусов?

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

Любой треугольник 360 градусов

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

∠1 + ∠2 + ∠3 = 540° — (∠4 + ∠5 + ∠6) = 540° — 180° = 360°.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Внешний угол треугольника

Внешний угол треугольника – это угол, смежный с любым из внутренних углов треугольника.

Любой треугольник 360 градусов

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

Любой треугольник 360 градусов

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны ( как вертикальные).

Записываем в тетрадь:

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Любой треугольник 360 градусов

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

Из этого следует, что

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Видео:Сумма углов треугольникаСкачать

Сумма углов треугольника

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

Любой треугольник 360 градусов

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

∠1 + ∠2 + ∠3 = 540° — (∠4 + ∠5 + ∠6) = 540° — 180° = 360°

Видео:Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

Изучите видео ролик ниже:

Видео YouTube

Любой треугольник 360 градусов

Видео:Почему в окружности 360 градусов? 🤔Скачать

Почему в окружности 360 градусов? 🤔

Практическая часть занятий:

Любой треугольник 360 градусов

Любой треугольник 360 градусов

Видео:Классный способ для разметки любого угла без транспортира.Скачать

Классный способ для разметки любого угла без транспортира.

Решение задач на отыскание величин треугольника по теореме о сумме углов треугольника и внешнем угле. Теоремы обязательно выучить и видео внимательно все разобрать:

Видео YouTube

🔍 Видео

Почему круг делят на 360 градусов? НЕ НУМЕРОЛОГИЯ Как сделать транспортир?Скачать

Почему круг делят на 360 градусов? НЕ НУМЕРОЛОГИЯ Как сделать транспортир?

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Геометрия за 6 минут — Сумма углов треугольника и Внешний УголСкачать

Геометрия за 6 минут — Сумма углов треугольника и Внешний Угол

ЭТА ИЛЛЮЗИЯ ДЕЙСТВИТЕЛЬНО СТРАННАЯ - ПЕРЕВЕРНИ ИЗОБРАЖЕНИЕ!Скачать

ЭТА ИЛЛЮЗИЯ ДЕЙСТВИТЕЛЬНО СТРАННАЯ - ПЕРЕВЕРНИ ИЗОБРАЖЕНИЕ!

Экстремальные американские горки 360° VR, от которых взыграет адреналинСкачать

Экстремальные американские горки 360° VR, от которых взыграет адреналин

Как узнать сумму углов любой выпуклой фигуры? Просто!Скачать

Как узнать сумму углов любой выпуклой фигуры? Просто!

СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | ТригонометрияСкачать

СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | Тригонометрия

Определение угла треугольникаСкачать

Определение угла треугольника

Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Чему равна сумма углов выпуклого многоугольникаСкачать

Чему равна сумма углов выпуклого многоугольника

Сумма углов треугольника равна 180Скачать

Сумма углов треугольника равна 180
Поделиться или сохранить к себе: