Вписанным в круг многоугольником называется такой многоугольник, вершины которого лежат на окружности. Описанным около круга многоугольником называется такой многоугольник, стороны которого касаются окружности.
Описанной около многоугольника окружностью называется окружность, проходящая через его вершины. Вписанной в многоугольник окружностью называется окружность, касающаяся его сторон.
Вписанный многоугольник | Описанный многоугольник |
Если многоугольник взят произвольно, то в него нельзя вписать и около него нельзя описать окружность. Только многоугольники соответствующие некоторым правилам можно описать окружностью или вписать в них окружность.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Правила для многоугольников которые можно вписать в окружность и описать окружность вокруг них
Для треугольника всегда возможны и вписанная окружность и описанная окружность.
Для четырехугольника окружность можно вписать только в том случае, если суммы его противоположных сторон одинаковы. Из всех параллелограммов только в ромб и квадрат можно вписать окружность. Ее центр лежит на пересечении диагоналей.
Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. Из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. Ее центр лежит на пересечении диагоналей.
Вокруг трапеции возможно описать окружность или в трапецию можно вписать окружность если трапеция равнобокая.
Видео:В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Многоугольник. Свойства четырехугольников вписанных в окружность.
Если все вершины какого-нибудь многоугольника (ABCDE) лежат на окружности, то говорят, что этот многоугольник вписан в окружность, или что окружность описана около него.
Теорема.
В выпуклом вписанном четырехугольнике сумма противоположных углов равна двум прямым углам (2d).
Обратная теорема:
Если в выпуклом четырехугольнике сумма противоположных углов равна двум прямым углам (2d), то около него можно описать окружность.
Пусть ABCD — вписанный выпуклый четырехугольник. Необходимо обосновать, что:
Углы B и D, как вписанные будут равны: первый — половиной дуги ADС, второй — половиной дуги ABС. Следовательно, B + D равняется полусумме дуг ADС и ABС, т.е. половиной окружности. Значит, B + D = 2d. Подобно этому убедимся, что A + С= 2d .
Необходимо обосновать, что около такого четырехугольника можно описать окружность. Через какие-нибудь три его вершины, например, A, B, С прочертим окружность (что всегда можно сделать).
Четвертая вершина D должна располагаться на этой окружности, потому что в противном случае угол D лежал бы своей вершиной или внутри круга, или вне его, и тогда этот угол не измерялся бы половиной дуги ABС, поэтому сумма B + D не измерялась бы полусуммой дуг ADС и ABС, т.е. сумма B + D не равнялась бы 2d, что противоречит условию.
Следствия.
1. Из всех параллелограммов только около прямоугольника можно описать окружность.
2. Около трапеции можно описать окружность только тогда, когда она равнобедренная.
Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать
Любой многоугольник можно вписать в окружность верно или нет
Какое из следующих утверждений верно?
1) Любой прямоугольник можно вписать в окружность.
2) Все углы ромба равны.
3) Треугольник со сторонами 1, 2, 4 существует.
Проверим каждое из утверждений.
1) « Любой прямоугольник можно вписать в окружность.» — верно, выпуклый четырёхугольник можно вписать в окружность тогда и только тогда, когда сумма противоположныхх углов этого четырёхугольника равна 180°.
2) «Все углы ромба равны.» — неверно, противоположные углы ромба равны.
3) «Треугольник со сторонами 1, 2, 4 существует.» — неверно, для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны.
🌟 Видео
№1078. Верно ли утверждение: а) любой правильный многоугольник является выпуклымСкачать
110. Окружность, описанная около правильного многоугольникаСкачать
Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать
Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать
ВСЕ ТИПЫ 19 задания на ОГЭ по математике 2024 | Дядя АртёмСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать
Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Разбор задания 13 ОГЭ по математикеСкачать
8 класс, 38 урок, Вписанная окружностьСкачать
Правильные многоугольники. Урок 11. Геометрия 9 классСкачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
ВПИСАННАЯ ОКРУЖНОСТЬ в многоугольник 9 класс геометрияСкачать
Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать