Линия центров окружностей свойства

Окружность

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Основные термины


Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной


  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд


  1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Дуги, заключенные между параллельными хордами, равны.

Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Свойства окружности


  1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
  2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью


  1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.

Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Длины и площади


  1. Длина окружности C радиуса R вычисляется по формуле:

Площадь S круга радиуса R вычисляется по формуле:

Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Вписанные и описанные окружности


Окружность и треугольник


  • центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:

где S — площадь треугольника, а — полупериметр;

центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;

  • центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;
  • центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
  • Окружность и четырехугольники


    • около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

    • около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
    • около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
    • в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

    Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

    Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

    Окружность. Относительное взаимоположение окружностей.

    Если две окружности имеют только одну общую точку, то говорят, что они касаются.

    Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

    Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

    Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

    Теорема.

    Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

    Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

    Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

    Следствие.

    Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

    Теоремы.

    1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

    2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

    Признаки различных случаев относительного положения окружностей.

    Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

    Эти окружности могут находиться в следующих 5-ти относительных положениях:

    Линия центров окружностей свойства

    1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

    2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

    3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

    4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

    5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

    d R + R1, то окружности расположены одна вне другой, не касаясь.

    2. Если d = R + R1, то окружности касаются извне.

    3. Если d R — R1, то окружности пересекаются.

    4. Если d = R — R1, то окружности касаются изнутри.

    5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Основные теоремы, связанные с окружностями

    Радикальная ось — прямая, проходящая через точки пересечения двух окружностей.
    Линия центров окружностей — прямая, проходящая через центры двух окружностей.

    Теорема 1.

    1) Радикальная ось перпендикулярна линии центров окружностей.
    2) Отрезки касательных, проведенных из любой точки радикальной оси к этим окружностям, равны.

    Линия центров окружностей свойства

    Доказательство:

    1) Рассмотрим (triangle BMN) и (triangle AMN) : они равны по трем сторонам ( (BM=AM=R_1, BN=AN=R_2) — радиусы первой и второй окружностей соответственно). Таким образом, (angle BNM=angle ANM) , следовательно, (MN) — биссектриса в равнобедренном (triangle ANB) , следовательно, (MNperp AB) .

    2) Отметим произвольную точку (O) на радикальной оси и проведем касательные (OK_1, OK_3) к первой окружности и (OK_2, OK_4) ко второй окружности. Т.к. квадрат отрезка касательной равен произведению секущей на ее внешнюю часть, то (OK_1^2=OK_2^2=OK_3^2=OK_4^2=OBcdot OA) .

    Теорема 2.

    Пусть две окружности с центрами (M) и (N) касаются внешним образом в точке (A) . Две общие касательные (внутренняя и внешняя) (a) и (b) этих окружностей пересекаются в точке (B) . Точки касания — точки (A, K_1, K_2) (как показано на рисунке). Тогда [(1) <large>] [(2) <large>]

    Линия центров окружностей свойства

    Доказательство:

    1) Т.к. (BA) и (BK_1) — две касательные, проведенные к первой окружности из одной точки, то отрезки касательных равны: (BA=BK_1) . Аналогично, (BA=BK_2) . Таким образом, (BA=BK_1=BK_2) .

    2) Значит, (BA) — медиана в (triangle K_1AK_2) , равная половине стороны, к которой она проведена. Значит, (angle A=90^circ) .

    Теорема 3.

    Пусть две окружности касаются внешним образом в точке (A) . Через точку (A) проведены две прямые (B_1B_2) и (C_1C_2) , пересекающие каждую окружность в двух точках, как показано на рисунке. Тогда: [(1) <large>] [(2) <large>]

    Линия центров окружностей свойства

    Доказательство:

    1) Проведем через точку (A) общую касательную этих окружностей (OQ) . (angle OAC_2=angle QAC_1=alpha) как вертикальные. Т.к. угол между касательной и хордой, проведенной через точку касания, равен половине дуги, заключенной между ними, то (angle OAC_2=frac12buildrelsmileover) , (angle QAC_1=frac12buildrelsmileover) . Следовательно, (buildrelsmileover=buildrelsmileover=2alpha) . Таким образом, (angle AB_1C_1=angle AB_2C_2=alpha) . Значит, по двум углам (triangle AB_1C_1sim triangle AB_2C_2) .

    2) Т.к. (angle AB_1C_1=angle AB_2C_2) , то прямые (B_1C_1parallel B_2C_2) по накрест лежащим углам при секущей (B_1B_2) .

    Теорема Птолемея

    Во вписанном четырехугольнике произведение диагоналей равно сумме произведений противоположных сторон: [ACcdot BD=ABcdot CD+BCcdot AD]

    Доказательство

    Пусть для определенности (angle ABD . Проведем отрезок (BO) так, чтобы (O) лежала на (AC) и (angle ABD=angle CBO) :

    Линия центров окружностей свойства

    Т.к. (angle ACB=angle ADB) (опираются на одну и ту же дугу), то по двум углам (triangle OBCsim triangle ABD) . Значит: [dfrac=dfrac Rightarrow ADcdot BC=OCcdot BDphantom (1)]

    Т.к. (angle BAC=angle BDC) (опираются на одну и ту же дугу), (angle ABO=angle CBD) (состоят из равных по построению (оранжевых) углов и общего угла (angle DBO) ), то по двум углам (triangle ABOsim triangle BDC) . Значит: [dfrac=dfrac Rightarrow ABcdot CD=AOcdot BD phantom (2)]

    Сложим равенства ((1)) и ((2)) : (ADcdot BC+ABcdot CD=OCcdot BD+AOcdot BD=ACcdot BD) , чтд.

    Формула Эйлера:

    Пусть (R) — радиус описанной около треугольника (ABC) окружности, (r) — радиус вписанной окружности. Тогда расстояние (d) между центрами этих окружностей вычисляется по формуле: [<large>]
    Линия центров окружностей свойства

    Доказательство:

    а) Предположим, что (dne 0) . Пусть (O, Q) — центры описанной и вписанной окружности соответственно. Проведем диаметр описанной окружности (PS) через точку (Q) . Проведем также биссектрисы углов (angle A, angle B) — (AA_1, BB_1) соответственно (заметим, что они пересекутся в точке (Q) , т.к. центр вписанной окружности лежит на пересечении биссектрис). Хорды (PS) и (BB_1) пересекаются, следовательно, отрезки этих хорд равны: (PQcdot QS=BQcdot QB_1) .

    Т.к. (OP=OS=R, OQ=d) , то последнее равенство можно переписать в виде ((R-d)(R+d)=BQcdot QB_1 (*)) .

    Заметим, что т.к. (AA_1, BB_1) — биссектрисы, то (buildrelsmileover=buildrelsmileover=x, buildrelsmileover=buildrelsmileover=y) . Т.к. угол между хордами равен полусумме дуг, заключенных между ними, то:
    (angle AQB_1=frac12(x+y)) .

    С другой стороны, (angle B_1AA_1=frac12big(buildrelsmileover+buildrelsmileoverbig)=frac12(x+y))

    Таким образом, (angle AQB_1=angle B_1AA_1) . Следовательно, (triangle QB_1A) — равнобедренный и (B_1Q=B_1A) . Значит, равенство ((*)) можно переписать как:
    (R^2-d^2=BQcdot AB_1 (**)) .

    Проведем еще один диаметр описанной окружности (B_1B_2) . Тогда (triangle B_1AB_2) — прямоугольный ( (angle A) опирается на диаметр). Пусть также вписанная окружность касается стороны (AB) в точке (K) . Тогда (triangle BKQ) — прямоугольный.
    Заметим также, что (angle KBQ=angle AB_2B_1) (т.к. они опираются на одну и ту же дугу).
    Значит, (triangle B_1AB_2sim triangle BKQ) по двум углам, следовательно:

    (dfrac=dfrac Rightarrow dfrac=dfrac Rightarrow BQcdot AB_1=2Rr) .

    Подставим это в ((**)) и получим:

    (R^2-d^2=2Rr Rightarrow d^2=R^2-2Rr) .

    б) Если (d=0) , т.е. центры вписанной и описанной окружностей совпадают, то (AK=BK=sqrt Rightarrow AB=2sqrt) . Аналогично (AC=BC=AB=sqrt) , т.е. треугольник равносторонний. Следовательно, (angle A=60^circ Rightarrow angle KAO=30^circ Rightarrow r=frac12R Rightarrow R=2r) или (0=R^2-2Rr) (т.е. в этом случае формула также верна).

    Теорема о бабочке:

    Пусть через середину хорды (AB) — точку (O) , проведены две хорды (MN) и (KP) . Пусть (MPcap AB=X, KNcap AB=Y) . Тогда [<large>]

    Линия центров окружностей свойства

    Доказательство:

    Проведем перпендикуляры (XX_1, YY_2perp MN, XX_2, YY_1perp KP) .
    Следующие углы равны, т.к. опираются на одну и ту же дугу: (angle PMO=angle NKO, angle MPO=angle KNO) .
    Следующие углы равны, т.к. вертикальные: (angle XOX_1=angle YOY_2, angle XOX_2=angle YOY_1) .

    Следующие прямоугольные треугольники подобны:

    1) (triangle XX_1Osim triangle YY_2O Rightarrow dfrac=dfrac)

    2) (triangle XX_2Osim triangle YY_1O Rightarrow dfrac=dfrac)

    3) (triangle MXX_1sim triangle KYY_1 Rightarrow dfrac=dfrac)

    4) (triangle PXX_2sim triangle NYY_2 Rightarrow dfrac=dfrac)

    Из 1) и 2) следует, что

    Из 3) и 4) следует, что

    Совместив последние два равенства, получим:

    Заметим, что для пересекающихся хорд (AB) и (MP) : (AXcdot XB=MXcdot PX) . Аналогично (AYcdot YB=KYcdot NY) . Значит:

    Обозначим (OX=x, OY=y, OA=OB=t Rightarrow)

    📽️ Видео

    Длина окружности. Площадь круга. 6 класс.Скачать

    Длина окружности. Площадь круга. 6 класс.

    Окружность и ее свойства (bezbotvy)Скачать

    Окружность и ее свойства (bezbotvy)

    Свойство диаметра окружности. 7 класс.Скачать

    Свойство диаметра окружности. 7 класс.

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

    Математика без Ху!ни. Кривые второго порядка. Эллипс.

    Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

    Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

    Теорема о числе точек пересечения двух окружностейСкачать

    Теорема о числе точек пересечения двух окружностей

    Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

    Как найти центр круга с помощью подручных средств? ЛЕГКО.

    Быстро и легко определяем центр любой окружностиСкачать

    Быстро и легко определяем центр любой окружности

    Окружность, диаметр, хорда геометрия 7 классСкачать

    Окружность, диаметр, хорда геометрия 7 класс

    Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

    Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline
    Поделиться или сохранить к себе: