Для того, что бы узнать площадь квадрата описанного около окружности необходимо с тем что у этих двух фигур общее, а одной из общих величин у них является сторона квадрата которая равна диаметру круга.
Таким образом для нахождения площади квадрата описанного около окружности, через этот круг, необходимо найти значение диаметра.
Для нахождения диаметра окружности нам необходимо знать одну из его величин а именно:
- либо площадь круга, обозначаемая буквой S,
- либо периметр круга, обозначаемый буквой P,
- либо радиус круга, обозначаемый буквой R,
1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
Соответственно если мы знаем диаметр круга который равен стороне описанного квадрата,
Теперь мы можем узнать площадь этого квадрата
- Квадрат описан вокруг окружности радиусом 30 найди его площадь
- Источник задания: Решение 2844.-10. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов.
- Квадрат. Онлайн калькулятор
- Свойства квадрата
- Диагональ квадрата
- Окружность, вписанная в квадрат
- Формула вычисления радиуса вписанной окружности через сторону квадрата
- Формула вычисления сторон квадрата через радиус вписанной окружности
- Окружность, описанная около квадрата
- Формула радиуса окружности описанной вокруг квадрата
- Формула стороны квадрата через радиус описанной около квадрата окружности
- Периметр квадрата
- Признаки квадрата
- 🎦 Видео
Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Квадрат описан вокруг окружности радиусом 30 найди его площадь
Видео:Найти площадь квадрата описанного около окружности радиуса 19Скачать
Источник задания: Решение 2844.-10. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов.
Задание 9. В треугольнике два угла равны 27° и 79°. Найдите его третий угол. Ответ дайте в градусах.
Так как сумма всех углов в треугольнике равна 180 градусов, то третий угол будет равен
.
Задание 10. Найдите площадь квадрата, описанного около окружности радиуса 25.
Из рисунка можно увидеть, что диаметр окружности (красная линия) в точности равен длине стороны квадрата, то есть сторона квадрата равна
.
Площадь квадрата определяется по формуле
.
Видео:ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Видео:Найдите площадь квадрата, описанного вокруг ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Видео:Задание 3 ЕГЭ по математике. Урок 47Скачать
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
(3) |
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Видео:2026 Найдите площадь квадрата описанного около окружности радиуса 14Скачать
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
(4) |
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Видео:Найдите площадь квадрата, описанного около окружности радиуса 4.Скачать
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Видео:Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
(5) |
Из формулы (5) найдем R:
(6) |
или, умножая числитель и знаменатель на , получим:
. | (7) |
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
. | (8) |
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
(9) |
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Видео:ОГЭ 17 заданиеСкачать
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
(10) |
Так как AD и BC перпендикулярны, то
(11) |
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
(12) |
Эти реугольники также равнобедренные. Тогда
(13) |
Из (13) следует, что
(14) |
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
🎦 Видео
Радиус описанной окружностиСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
17 задание ОГЭ по математикеСкачать
§ 13 № 1- 55 - Геометрия 7-9 класс ПогореловСкачать
Круг внутри квадрата. ищем площадь квадрата, если у круга радиус 7. огэ геометрия задание 17Скачать
найти радиус окружности, описанной вокруг треугольникаСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать