Косинус в тупоугольном треугольнике

Теорема косинусов и синусов

Косинус в тупоугольном треугольнике

О чем эта статья:

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Косинус в тупоугольном треугольнике

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

Косинус в тупоугольном треугольнике

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

Косинус в тупоугольном треугольнике

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:


Косинус в тупоугольном треугольнике

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Косинус в тупоугольном треугольнике

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Косинус в тупоугольном треугольнике

Теорема косинусов может быть использована для любого вида треугольника.

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Видео:Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

Нахождение косинуса и синуса угла в прямоугольном треугольнике

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Косинус в тупоугольном треугольнике

Видео:Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Видео:ЕГЭ ПЛАНИМЕТРИЯ ТУПОУГОЛЬНЫЙ ТРЕУГОЛЬНИК| НЕТИПИЧНЫЙ КОСИНУС УГЛА | ГАРМАШУКСкачать

ЕГЭ ПЛАНИМЕТРИЯ ТУПОУГОЛЬНЫЙ ТРЕУГОЛЬНИК| НЕТИПИЧНЫЙ КОСИНУС УГЛА  | ГАРМАШУК

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Косинус в тупоугольном треугольнике

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Косинус в тупоугольном треугольнике

Из треугольника СМВ по теореме косинусов найдём СМ:
Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

Косинус в тупоугольном треугольнике

  • Если c 2 2 + b 2 , то ∠C — острый.

Косинус в тупоугольном треугольнике

Видео:Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать

Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Косинус в тупоугольном треугольникеДля плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

Косинус в тупоугольном треугольнике

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

Видео:Задача 6 №27346 ЕГЭ по математике. Урок 39Скачать

Задача 6 №27346 ЕГЭ по математике. Урок 39

Теорема косинусов

Видео:Синус, косинус и тангенс острого угла в прямоугольном треугольникеСкачать

Синус, косинус и тангенс острого угла в прямоугольном треугольнике

Формулировка теоремы косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:

Косинус в тупоугольном треугольнике

Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними

Полезные формулы теоремы косинусов:

Как видно из указанного выше, с помощью теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.

Видео:Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

Теорема Пифагора

Теорема Пифагора . В прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы .

Доказательство . Докажем, что длины сторон произвольного прямоугольного треугольника ABC (рис.1)

Косинус в тупоугольном треугольнике

С этой целью рассмотрим квадрат квадрат со стороной, равной c , изображённый на рисунке 2.

Косинус в тупоугольном треугольнике

Площадь этого квадрата равна сумме площадей четырёх одинаковых прямоугольных треугольников, равных треугольнику ABC (рис.3, рис.4), и площади квадрата со стороной, равной a – b (рис.5).

Косинус в тупоугольном треугольнике
Рис.3
Косинус в тупоугольном треугольнике
Рис.4
Косинус в тупоугольном треугольнике
Рис.5

Поэтому справедливо равенство

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

что и требовалось доказать.

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Формулировка теоремы косинусов для треугольника

Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами Косинус в тупоугольном треугольнике, Косинус в тупоугольном треугольнике, и Косинус в тупоугольном треугольникедлины сторон треугольника ABC, лежащие соответственно против углов A, B и C.

Косинус в тупоугольном треугольнике

Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:

Косинус в тупоугольном треугольнике

На рисунке для удобства дальнейших рассуждений угол С обозначен углом Косинус в тупоугольном треугольнике. Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»

Понятно, что если бы вы выражали другую сторону треугольника, например, сторону Косинус в тупоугольном треугольнике, то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны Косинус в тупоугольном треугольнике, то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и Косинус в тупоугольном треугольнике. Выражение для квадрата стороны Косинус в тупоугольном треугольнике. Выражение для квадрата стороны получается аналогично:

Косинус в тупоугольном треугольнике

Косинус в тупоугольном треугольнике

Видео:Задача 6 №27350 ЕГЭ по математике. Урок 42Скачать

Задача 6 №27350 ЕГЭ по математике. Урок 42

Классическое доказательство теоремы косинусов.

Пусть есть треугольник ABC. Из вершины C на сторону AB опустили высоту CD. Значит:

Косинус в тупоугольном треугольнике

Записываем теорему Пифагора для 2-х прямоугольных треугольников ADC и BDC:

h 2 = b 2 – (b cos α) 2 (1)

h 2 = a 2 – (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2

a 2 = b 2 + c 2 – 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

b 2 = a 2 + c 2 – 2ac cos β

c 2 = a 2 + b 2 – 2ab cos γ.

Видео:Задача 6 №27345 ЕГЭ по математике. Урок 38Скачать

Задача 6 №27345 ЕГЭ по математике. Урок 38

Формулировка и формула теоремы

В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.

a 2 = b 2 + c 2 – 2bc cos α

Косинус в тупоугольном треугольнике

Видео:Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать

Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.

Теорема косинусов для остроугольного треугольника.

Если угол острый, то справедлива формула:

a 2 = b 2 + c 2 −2bx

Косинус в тупоугольном треугольнике

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Доказательство теоремы косинусов для треугольника

Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.

Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.

Заменим стороны нашего треугольника следующими векторами:

Косинус в тупоугольном треугольнике
Согласно правилам сложения векторов имеем: Косинус в тупоугольном треугольнике. Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим Косинус в тупоугольном треугольнике. Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим в правую часть равенства с противоположным знаком, в результате чего получаем следующее векторное выражение: Косинус в тупоугольном треугольнике.

Теперь возьмём скалярный квадрат обеих частей полученного выражения. В результате чего получим:

Косинус в тупоугольном треугольнике

Я напоминаю, что по определению скалярное произведение векторов равно произведению длин этих векторов на косинус угла между ними. Из этого определения также следует, что скалярный квадрат вектора равен квадрату его длины. Действительно, ведь угол между вектором и им же самим равен нулю, то есть соответствующих косинус равен 1. То есть остаётся только квадрат длины вектора. Исходя из этого мы сразу получаем выражение для теоремы косинусов:

Косинус в тупоугольном треугольнике

Что и требовалось доказать. Причём данное доказательство хорошо ещё тем, что позволяет лучше запомнить саму формулу. Ведь теперь становится понятным, откуда берётся этот хвост Косинус в тупоугольном треугольнике. Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол Косинус в тупоугольном треугольнике. Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол может быть острым, тупым или прямым. И не требуется рассматривать доказательство для каждого из этих случаев, что не может не радовать.

Кстати, в случае, когда угол Косинус в тупоугольном треугольникепрямой, мы получаем Косинус в тупоугольном треугольникепрямой, мы получаем , и выражение принимает следующий вид: Косинус в тупоугольном треугольнике. Что мы получили? Правильно! Это запись теоремы Пифагора. Квадрат гипотенузы равен сумме квадратов катетов. Так что ниточки постепенно сплетаются. То есть, как обычно говорят, теорема косинусов для треугольника есть обобщение теоремы Пифагора на случай произвольного треугольника, не обязательно прямоугольного.

Видео:Косинус угла в прямоугольном треугольникеСкачать

Косинус угла в прямоугольном треугольнике

Теорема косинусов

Теорема косинусов . Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.

Доказательство . Рассмотрим сначала треугольник ABC , у которого углы A и С – острые (рис.6).

Косинус в тупоугольном треугольнике

Докажем, что длины сторон этого треугольника удовлетворяют равенству

a 2 = b 2 + c 2 –
– 2bc cos A
(1)

С этой целью проведём высоту BD из вершины B (рис.7).

Косинус в тупоугольном треугольнике

В соответствии с определениями синуса и косинуса угла прямоугольного треугольника справедливы равенства

BD = c sin A, AD = c cos A, DC = b – AD = b – c cos A.

Из теоремы Пифагора , применённой к прямоугольному треугольнику BDC , получим

Таким образом, в случае треугольника ABC с острыми углами A и С теорема косинусов доказана.

Замечание 1 . Для того, чтобы получить полное доказательство теоремы косинусов, необходимо рассмотреть также и следующие случаи:

  1. Угол A – острый, угол C – тупой (рис.8)

Косинус в тупоугольном треугольнике

Угол A – прямой (рис. 9).

Косинус в тупоугольном треугольнике

Угол A – тупой (рис.10).

Косинус в тупоугольном треугольнике

Во всех перечисленных случаях доказательства теоремы косинусов проводятся совершенно аналогично тому, как это было сделано для случая острых углов A и C , и мы рекомендуем читателю провести эти доказательства в качестве полезного и несложного упражнения.

Замечание 2 . В случае, когда угол A является прямым углом, формула (1) принимает вид

откуда вытекает, что теорема Пифагора является частным случаем теоремы косинусов.

Замечание 3 . Если у треугольника известны длины всех сторон, то с помощью теоремы косинусов можно найти косинус любого угла треугольника, например,

Косинус в тупоугольном треугольнике

Видео:Синус, косинус и тангенс Решение задач по геометрииСкачать

Синус, косинус и тангенс Решение задач по геометрии

Примеры задач

Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.

Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 * 5 * 9 * cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона a = √ 61 см ≈ 7,81 см.

Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.

Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:

Косинус в тупоугольном треугольнике

Следовательно, угол α = arccos (-1/6) ≈ 99,59°.

Видео:ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать

ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрия

Теорема косинусов для прямоугольного треугольника

Теорема косинусов для прямоугольного треугольника.

Рассмотрим прямоугольный треугольник ABC:

По теореме косинусов сторона «а» равна:

но угол А прямой, косинус прямого угла равен нулю, отсюда получаем:

Таким образом мы получили формулу теоремы Пифагора:

💥 Видео

Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Поделиться или сохранить к себе: