Количество точек пересечения окружности и прямой

Пересечение окружности и прямой

Дана окружность (координатами своего центра и радиусом) и прямая (своим уравнением). Требуется найти точки их пересечения (одна, две, либо ни одной).

Видео:Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой

Решение

Вместо формального решения системы двух уравнений подойдём к задаче с геометрической стороны (причём, за счёт этого мы получим более точное решение с точки зрения численной устойчивости).

Предположим, не теряя общности, что центр окружности находится в начале координат (если это не так, то перенесём его туда, исправив соответствующе константу C в уравнении прямой). Т.е. имеем окружность с центром в (0,0) радиуса r и прямую с уравнением Ax + By + C = 0.

Сначала найдём ближайшую к центру точку прямой — точку с некоторыми координатами (x0,y0). Во-первых, эта точка должна находиться на таком расстоянии от начала координат:

Во-вторых, поскольку вектор (A,B) перпендикулярен прямой, то координаты этой точки должны быть пропорциональны координатам этого вектора. Учитывая, что расстояние от начала координат до искомой точки нам известно, нам нужно просто нормировать вектор (A,B) к этой длине, и мы получаем:

(здесь неочевидны только знаки ‘минус’, но эти формулы легко проверить подстановкой в уравнение прямой — должен получиться ноль)

Зная ближайшую к центру окружности точку, мы уже можем определить, сколько точек будет содержать ответ, и даже дать ответ, если этих точек 0 или 1.

Действительно, если расстояние от (x0, y0) до начала координат (а его мы уже выразили формулой — см. выше) больше радиуса, то ответ — ноль точек. Если это расстояние равно радиусу, то ответом будет одна точка — (x0,y0). А вот в оставшемся случае точек будет две, и их координаты нам предстоит найти.

Итак, мы знаем, что точка (x0, y0) лежит внутри круга. Искомые точки (ax,ay) и (bx,by), помимо того что должны принадлежать прямой, должны лежать на одном и том же расстоянии d от точки (x0, y0), причём это расстояние легко найти:

Заметим, что вектор (-B,A) коллинеарен прямой, а потому искомые точки (ax,ay) и (bx,by) можно получить, прибавив к точке (x0,y0) вектор (-B,A), нормированный к длине d (мы получим одну искомую точку), и вычтя этот же вектор (получим вторую искомую точку).

Окончательное решение такое:

Если бы мы решали эту задачу чисто алгебраически, то скорее всего получили бы решение в другом виде, которое даёт бОльшую погрешность. Поэтому «геометрический» метод, описанный здесь, помимо наглядности, ещё и более точен.

Видео:Взаимное расположение окружности и прямой. 7 класс.Скачать

Взаимное расположение окружности и прямой. 7 класс.

Реализация

Как и было указано в начале описания, предполагается, что окружность расположена в начале координат.

Поэтому входные параметры — это радиус окружности и коэффициенты A,B,C уравнения прямой.

Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Пересечение окружности и прямой.Координаты.

Элементы окружности или координаты
x^2+y^2+ x+ y+ =0
Элементы прямой линии
Уравнение окружности
Уравнение прямой к угловым коэффициентом
Координаты пересечения окружности и прямой

Рассмотрим более подробно задачу пересечения окружности и прямой. В принципе само решение есть уже в общем виде Пересечение прямой и кривой второго порядка, но мы рассмотрим и выведем формулы точек пересечения этих двух геометрических объектов.

Уравнение прямой, как мы знаем из материала Расчет параметров прямой линии по заданным параметрам могут быть заданы в нескольких видах:

— с угловым коэффициентом

— в нормальном виде

Что бы решить нашу первоначальную задачу, использовать будем уравнение прямой с угловым коэффициентом которое имеет вид

Уравнение окружности тоже может быть выражена в различных видах

Например в общем виде оно имеет вид

Подставим в уравнение окружности, уравнение прямой

Мы получили стандартное квадратное уравнение, решив котрое мы получим два значения, которые и будут являтся абсциссами точек пересечения прямой и окружности.

Подставим эти координаты в уравнение прямой, мы получим две ординаты точек пересечения.

Таким образом решение найдено.

Для упрощения, для сверки результатов — калькулятор помогает Вам рассчитать эти точки. Интересная особенность состоит в том, что прямая может быть задана в любом виде, хоть виде двух точек.

А уравнение окружности может быть не только введено с помощью коэффицентов, но и в виде пары трех координат через которые, эта окружность будет проходить.

Видео:Теорема о числе точек пересечения окружности и прямойСкачать

Теорема о числе точек пересечения окружности и прямой

Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2

Вступление

Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.

Начнем с взаимного расположения точки относительно прямой, луча и отрезка.

Задача №1

Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.

Решение
Понятно, что если прямая задана своим уравнением ax + by + c = 0, то тут и решать нечего. Достаточно подставить координаты точки в уравнение прямой и проверить чему оно равно. Если больше нуля, то точка находится в верхней полуплоскости, если равна нулю, то точка находится на прямой и если меньше нуля, то точка находится в нижней полуплоскости. Интереснее случай, когда прямая задана, задана координатами двух точек назовем их P1(x1, y1), P2(x2, y2). В этом случае можно спокойно найти коэффициенты a, b и c и применить предыдущее рассуждение. Но надо сначала подумать, оно нам надо? Конечно, нет! Как я говорил косое произведения — это просто жемчужина вычислительной геометрии. Давайте применим его. Известно, что косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому нам достаточно посчитать косое произведение векторов P1P2 и P1M и по его знаку сделать вывод.

Количество точек пересечения окружности и прямой

Задача №2

Определить принадлежит ли точка лучу.

Решение
Давайте вспомним, что такое луч: луч — это прямая, ограниченная точкой с одной стороны, а с другой стороны бесконечная. То есть луч задается некоторой начальной точкой и любой точкой лежащей на нем. Пусть точка P1(x1, y1) — начало луча, а P2(x2, y2) — любая точка принадлежащая лучу. Понятно, что если точка принадлежит лучу, то она принадлежит и прямой проходящей через эти точки, но не наоборот. Поэтому принадлежность прямой является необходимым, но не достаточным условием для принадлежности лучу. Поэтому от проверки косового произведения нам никуда не деться. Для достаточного условия нужно вычислить еще и скалярное произведение тех же векторов. Если оно меньше нуля, то точка не принадлежит лучу, если же оно не отрицательно, то точка лежит на луче. Почему так? Давайте посмотрим на рисунок.

Количество точек пересечения окружности и прямой

Итак, для того чтобы точка M(x, y) лежала на луче с начальной точкой P1(x1, y1), где P2(x2, y2) лежит на луче необходимо и достаточно выполнения двух условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (P1P2, P1M) ≥ 0 – скалярное произведение (точка лежит на луче)

Задача №3

Определить принадлежит ли точка отрезку.

Решение
Пусть точки P1(x1, y1), P2(x2, y2) концы заданного отрезка. Опять-таки необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через P1, P2. Далее нам нужно определить лежит ли точка между точками P1 и P2, для этого нам на помощь приходит скалярное произведение векторов только на этот раз других: (MP1, MP2). Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка. Почему так? Посмотрим на рисунок.

Количество точек пересечения окружности и прямой

Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P1(x1, y1), P2(x2, y2) необходимо и достаточно выполнения условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (MP1,MP2) ≤ 0 – скалярное произведение (точка лежит между P1 и P2)

Задача №4

Взаимное расположение двух точек относительно прямой.

Решение
В этой задаче необходимо определить по одну или по разные стороны относительно прямой находятся две точки.

Количество точек пересечения окружности и прямой

Если точки находятся по разные стороны относительно прямой, то косые произведения имеют разные знаки, а значит их произведение отрицательно. Если же точки лежат по одну сторону относительно прямой, то знаки косых произведений совпадают, значит, их произведение положительно.
Итак:
1. [P1P2, P1M1] * [P1P2, P1M2] 0 – точки лежат по одну сторону.
3. [P1P2, P1M1] * [P1P2, P1M2] = 0 – одна (или две) из точек лежит на прямой.

Кстати, задача об определении наличия точки пересечения у прямой и отрезка решается точно также. Точнее, это и есть эта же задача: отрезок и прямая пересекаются, когда концы отрезка находятся по разные стороны относительно прямой или когда концы отрезка лежат на прямой, то есть необходимо потребовать [P1P2, P1M1] * [P1P2, P1M2] ≤ 0.

Задача №5

Определить пересекаются ли две прямые.

Решение
Будем считать, что прямые не совпадают. Понятно, что прямые не пересекаются, только если они параллельны. Поэтому, найдя условие параллельности, мы можем, определить пересекаются ли прямые.
Допустим прямые заданы своими уравнениями a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0. Тогда условие параллельности прямых заключается в том, что a1b2 — a2b1 = 0.
Если же прямые заданы точками P1(x1, y1), P2(x2, y2), M1(x3, y3), M2(x4, y4), то условие их параллельности заключается в проверки косого произведения векторов P1P2 и M1M2: если оно равно нулю, то прямые параллельны.

Количество точек пересечения окружности и прямой

В общем, то когда прямые заданы своими уравнениями мы тоже проверяем косое произведение векторов (-b1, a1), (-b2, a2) которые называются направляющими векторами.

Задача №6

Определить пересекаются ли два отрезка.

Решение
Вот эта задача мне, действительно, нравится. Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:

Количество точек пересечения окружности и прямой

Итак, нам нужно проверить, чтобы концы каждого из отрезков лежали по разные стороны относительного концов другого отрезка. Пользуемся косым произведением векторов. Посмотрите на первый рисунок: [P1P2, P1M2] > 0, [P1P2, P1M1] [P1P2, P1M2] * [P1P2, P1M1] 2 + b 2 ).

Задача №8

Расстояние от точки до луча.

Решение
Эта задача отличается от предыдущей тем, что в этом случае может получиться, так что перпендикуляр из точки не падает на луч, а падает на его продолжение.

Количество точек пересечения окружности и прямой

В случае, когда перпендикуляр не падает на луч необходимо найти расстояние от точки до начала луча – это и будет ответом на задачу.

Как же определить падает ли перпендикуляр на луч или нет? Если перпендикуляр не падает на луч, то угол MP1P2 – тупой иначе острый (прямой). Поэтому по знаку скалярного произведения векторов мы можем определить попадает ли перпендикуляр на луч или нет:
1. (P1M, P1P2) 2 .

Теперь рассмотрим случай, когда центр второго круга O2 находится между точками O1 и C. В этом случае получим отрицательное значение величины d2. Использование отрицательного значения d2 приводит к отрицательному значению α. В этом случае необходимо для правильного ответа прибавить к α 2π.
Количество точек пересечения окружности и прямой

Заключение

Ну вот и все. Мы рассмотрели не все, но наиболее часто встречаемые задачи вычислительной геометрии касающиеся взаимного расположения объектов.

📹 Видео

Взаимное расположение и точки пересечения прямой и окружностиСкачать

Взаимное расположение и точки пересечения прямой и окружности

Теорема о числе точек пересечения окружности с прямой и окружностьюСкачать

Теорема о числе точек пересечения окружности с прямой и окружностью

№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.Скачать

№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.

УРАВНЕНИЯ ОКРУЖНОСТИ И ПРЯМОЙ 9 класс геометрияСкачать

УРАВНЕНИЯ ОКРУЖНОСТИ И ПРЯМОЙ 9 класс геометрия

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о числе точек пересечения двух окружностейСкачать

Теорема о числе точек пересечения двух окружностей

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Алгоритмы. Пересечение окружностейСкачать

Алгоритмы. Пересечение окружностей

Внешнее сопряжение дуги и прямой дугой заданного радиуса. Урок16.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внешнее сопряжение дуги и прямой дугой заданного радиуса. Урок16.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Уравнение окружности (1)Скачать

Уравнение окружности (1)

8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать

8 класс, 31 урок, Взаимное расположение прямой и окружности

Взаимное расположение окружностей. Точки пересечения окружностейСкачать

Взаимное расположение окружностей. Точки пересечения окружностей

ОГЭ Задание 11 Окружность ПрямаяСкачать

ОГЭ Задание 11 Окружность  Прямая
Поделиться или сохранить к себе: