Катет прямоугольного треугольника через высоту

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Содержание
  1. Свойства высоты в прямоугольном треугольнике
  2. Свойство 1
  3. Свойство 2
  4. Свойство 3
  5. Свойство 4
  6. Пример задачи
  7. Как найти стороны прямоугольного треугольника
  8. Онлайн калькулятор
  9. Найти гипотенузу (c)
  10. Найти гипотенузу по двум катетам
  11. Найти гипотенузу по катету и прилежащему к нему острому углу
  12. Найти гипотенузу по катету и противолежащему к нему острому углу
  13. Найти гипотенузу по двум углам
  14. Найти катет
  15. Найти катет по гипотенузе и катету
  16. Найти катет по гипотенузе и прилежащему к нему острому углу
  17. Найти катет по гипотенузе и противолежащему к нему острому углу
  18. Найти катет по второму катету и прилежащему к нему острому углу
  19. Найти катет по второму катету и противолежащему к нему острому углу
  20. Прямоугольный треугольник формулы
  21. Прямоугольный треугольник: основные формулы
  22. Прямоугольный треугольник: формулы площади и проекции
  23. Прямоугольный треугольник: формулы тригонометрия
  24. Прямоугольный треугольник: формулы для описанной окружности
  25. Прямоугольный треугольник: формулы для вписанной окружности
  26. 🌟 Видео

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Катет прямоугольного треугольника через высоту

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Катет прямоугольного треугольника через высоту

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Катет прямоугольного треугольника через высоту

Катет прямоугольного треугольника через высоту

2. Через длины сторон треугольника:

Катет прямоугольного треугольника через высоту

Катет прямоугольного треугольника через высоту

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Катет прямоугольного треугольника через высоту
Катет прямоугольного треугольника через высоту

Катет прямоугольного треугольника через высоту

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать

Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузе

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Катет прямоугольного треугольника через высоту

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Видео:Высота прямоугольного треугольникаСкачать

Высота прямоугольного треугольника

Как найти стороны прямоугольного треугольника

Видео:Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?

Онлайн калькулятор

Катет прямоугольного треугольника через высоту

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Прямоугольный треугольник формулы

Треугольник называется прямоугольным, если у него один из углов является прямым. Стороны, прилежащие к прямому углу, называются катетами, а сторона, лежащая напротив прямого угла, гипотенузой.

Прямоугольный треугольник: основные формулы

Катет прямоугольного треугольника через высоту

Прямоугольный треугольник: формулы площади и проекции

Катет прямоугольного треугольника через высоту

  1. Высота прямоугольного треугольника, проведенная к гипотенузе, равна : h = (ab):c.
  2. Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу: CH 2 = AH·BH.
  3. Катет прямоугольного треугольника — среднее пропорциональное или среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу: CA 2 = AB·AH; CB 2 = AB·BH.
  4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна ее половине.
  5. Площадь прямоугольного треугольника равна половине произведения катетов. S = (ab):2.
  6. Площадь прямоугольного треугольника равна половине произведения гипотенузы и высоты. S = (hc):2.

Прямоугольный треугольник: формулы тригонометрия

  1. Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе. cosα = AC: AB.
  2. Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе. sinα = BC:AB.
  3. Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему. tgα = BC:AC.
  4. Котангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему. ctgα = AC:BC.
  5. Основное тригонометрическое тождество: cos 2 α + sin 2 α = 1.
  6. Теорема косинусов: b 2 = a 2 + c 2 – 2ac·cosα.
  7. Теорема синусов: CB :sinA = AC : sinB = AB.

Прямоугольный треугольник: формулы для описанной окружности

Катет прямоугольного треугольника через высоту

  1. Радиус описанной окружности равен половине гипотенузы : R=AB:2.
  2. Центр описанной окружности лежит на середине гипотенузы.

Прямоугольный треугольник: формулы для вписанной окружности

Катет прямоугольного треугольника через высоту

Радиус окружности, вписанной в прямоугольный треугольник, вычисляется по формуле: r = (a + b -c):2.

Рассмотрим применение тригонометрических формул прямоугольного треугольника при решении задания 6(вариант 32) из сборника для подготовки к ЕГЭ по математике профиль автора Ященко.

В треугольнике ABC угол С равен 90°, sinA = 11/14, AC =10√3. Найти АВ.

  1. Применяя основное тригонометрическое тождество, найдем cosA = 5√3/14.
  2. По определению косинуса острого угла прямоугольного треугольника имеем: cosA = AC : AB, AB = AC : cosA = 10√3·14:5√3 = 28.

🌟 Видео

Лайфхак нахождения катета в прямоугольном треугольникеСкачать

Лайфхак нахождения катета в прямоугольном треугольнике

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула

КАК НАЙТИ ВЫСОТУ ПРОВЕДЕННУЮ К ГИПОТЕНУЗЕ??Скачать

КАК НАЙТИ ВЫСОТУ ПРОВЕДЕННУЮ К ГИПОТЕНУЗЕ??

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Геометрия Катет и гипотенуза прямоугольного треугольника равны 15 и 25. Найдите высоту, проведённуюСкачать

Геометрия Катет и гипотенуза прямоугольного треугольника равны 15 и 25. Найдите высоту, проведённую

№491. По данным катетам a и b прямоугольного треугольника найдите высоту, проведенную к гипотенузе:Скачать

№491. По данным катетам a и b прямоугольного треугольника найдите высоту, проведенную к гипотенузе:

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Свойства проекций катетов | Геометрия 8-9 классыСкачать

Свойства проекций катетов | Геометрия 8-9 классы

Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

1710 два катета прямоугольного треугольника равны 8 и 7 найдите площадь этого треугольникаСкачать

1710 два катета прямоугольного треугольника равны 8 и 7 найдите площадь этого треугольника

Высота прямоугольного треугольника ▶ (Мини-ликбез №9)Скачать

Высота прямоугольного треугольника ▶ (Мини-ликбез №9)

Теоремы о высоте и катете прямоугольного треугольникаСкачать

Теоремы о высоте и катете прямоугольного треугольника
Поделиться или сохранить к себе: