Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника. 
Стороны, прилежащие к прямому углу, называются катетами .
 
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
 
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где 
– катеты, 
– гипотенуза. Видеодоказательство
 4. Площадь прямоугольного треугольника с катетами 
:
 5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты 
и гипотенузу 
следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
 7. Радиус описанной окружности есть половина гипотенузы 
:
8. Медиана, проведенная к гипотенузе, равна ее половине
 9. Радиус вписанной окружности выражается через катеты 
и гипотенузу 
следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Видео:Катеты и гипотенузаСкачать

Прямоугольный треугольник: Признаки Равенства и Подобия
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Определение
Прямоугольный треугольник — это треугольник, в котором один из углов прямой.
Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.
 
Катет в прямоугольном треугольнике — это две стороны прилежащие к прямому углу.
 
Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

Свойства прямоугольного треугольника
В прямоугольном треугольнике:
- Сумма острых углов 90˚.
- Катет, противолежащий углу в 30˚, равен половине гипотенузы.
- Медиана, проведенная к гипотенузе, равна ее половине.
- Центр описанной окружности — середина гипотенузы. 
Формулы:
- Площадь прямоугольного треугольника равна 
 половине произведения катетов:
- Радиус описанной окружности около прямоугольного 
 треугольника равен половине гипотенузы:
- Радиус вписанной окружности в прямоугольный треугольник 
 выражается следующим образом:
- Квадрат гипотенузы равен сумме квадратов катетов:
 
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Признаки равенства прямоугольных треугольников
С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.
- По двум катетам: 
 Если два катета одного прямоугольного треугольника соответственно
 равны двум катетам другого прямоугольного треугольника,
 то такие треугольники равны.
- По катету и гипотенузе: 
 Если катет и гипотенуза одного прямоугольного треугольника соответственно
 равны катету и гипотенузе другого прямоугольного треугольника,
 то такие треугольники равны.
- По гипотенузе и острому углу: 
 Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
 равны гипотенузе и острому углу другого прямоугольного треугольника,
 то такие треугольникиравны.
- По катету и острому углу: 
 Если катет и острый угол одного прямоугольного треугольника соответственно
 равны катету и острому углу другого прямоугольного треугольника,
 то такие треугольники равны.
 
Видео:КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

Признаки прямоугольного треугольника
С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.
- По теореме Пифагора:
 Если квадрат стороны равен сумме квадратов двух других сторон,
 то треугольник прямоугольный.
- По центру описанной окружности: 
 Если центр описанной окружности лежит на стороне треугольника,
 то треугольник прямоугольный.
- По медиане: 
 Если медиана треугольника равна половине стороны, к которой она проведена,
 то треугольник прямоугольный.
- По площади:
 Если площадь треугольника равна половине произведения двух его сторон,
 то треугольник прямоугольный.
- По радиусу описанной окружности: 
 Если радиус описанной окружности равен половине,
 то треугольник прямоугольный.
Видео:Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

Признаки подобия прямоугольных треугольников
С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.
Видео:Теорема Пифагора для чайников)))Скачать

Свойства прямоугольного треугольника
| Фигура | Рисунок | Формулировка | ||||||||
| Прямоугольный треугольник | ||||||||||
| Равнобедренный прямоугольный треугольник | ||||||||||
| Прямоугольный треугольник с углом в 30° | 
| Прямоугольный треугольник | 
| Равнобедренный прямоугольный треугольник | 
|  Определение равнобедренного прямоугольного треугольника: Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты. Свойство углов прямоугольного треугольника: Острые углы равнобедренного прямоугольного треугольника равны 45° . | 
| Прямоугольный треугольник с углом в 30° | 
|  Свойство прямоугольного треугольника с углом в 30° : Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы. Признак прямоугольного треугольника с углом в 30° : Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° . | 
| Медиана, проведённая к гипотенузе прямоугольного треугольника | 
|  Свойство медианы, проведенной к гипотенузе прямоугольного треугольника: Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы. Признак прямоугольного треугольника: Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. | 
| Центр описанной окружности | 
|  Свойство окружности, описанной около прямоугольного треугольника: Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности. Признак прямоугольного треугольника: Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы. | 
|  В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов Обратная теорема Пифагора: Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным 💥 ВидеоЗадача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать  Найдите площадь прямоугольного треугольника, если сумма его катетов равна 15, а гипотенуза равна 13Скачать  №256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать  Определение длины гипотенузыСкачать  Геометрия Найдите катет прямоугольного треугольника, если его гипотенуза и второй катетСкачать  Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать  Катеты прямоугольного треугольника равны 3 и 4. Найдите высоту, проведённую к гипотенузеСкачать  #Проекция катета на гипотенузуСкачать  Геометрия Катет и гипотенуза прямоугольного треугольника равны 15 и 25. Найдите высоту, проведённуюСкачать  Катет против угла 30° равен половине гипотенузыСкачать  Катет напротив 30° равен половине гипотенузыСкачать  7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать  №484. В прямоугольном треугольнике а и b — катеты, с — гипотенуза. Найдите b, если:Скачать  | 



















