Какая сумма всех сторон треугольника

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Содержание
  1. Определение треугольника
  2. Классификация треугольников
  3. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  4. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  5. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  6. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  7. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  8. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  9. Свойства треугольника
  10. 1.Свойства углов и сторон треугольника.
  11. 2.Теорема синусов.
  12. 3. Теорема косинусов.
  13. 4. Теорема о проекциях
  14. Медианы треугольника
  15. Свойства медиан треугольника:
  16. Формулы медиан треугольника
  17. Треугольник
  18. Типы треугольников
  19. По величине углов
  20. Остроугольный треугольник
  21. Тупоугольный треугольник
  22. Прямоугольный треугольник
  23. По числу равных сторон
  24. Разносторонний треугольник
  25. Равнобедренный треугольник
  26. Равносторонний (правильный) треугольник
  27. Вершины, углы и стороны треугольника
  28. Свойства углов и сторон треугольника
  29. Сумма углов треугольника равна 180°
  30. В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы
  31. Сумма длин двух любых сторон треугольника больше длины оставшейся стороны
  32. Теорема синусов
  33. Теорема косинусов
  34. Теорема о проекциях
  35. Формулы для вычисления длин сторон треугольника
  36. Формулы сторон через медианы
  37. Медианы треугольника
  38. Свойства медиан треугольника
  39. Формулы медиан треугольника
  40. Формулы медиан треугольника через стороны
  41. Биссектрисы треугольника
  42. Свойства биссектрис треугольника
  43. Формулы биссектрис треугольника
  44. Формулы биссектрис треугольника через стороны
  45. Формулы биссектрис треугольника через две стороны и угол
  46. Высоты треугольника
  47. Свойства высот треугольника
  48. Формулы высот треугольника
  49. Формулы высот треугольника через сторону и угол
  50. Формулы высот треугольника через сторону и площадь
  51. Формулы высот треугольника через две стороны и радиус описанной окружности
  52. Окружность вписанная в треугольник
  53. Свойства окружности вписанной в треугольник
  54. Формулы радиуса окружности вписанной в треугольник
  55. Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру
  56. Радиус вписанной в треугольник окружности через три стороны
  57. Формулы высот треугольника через две стороны и радиус описанной окружности
  58. Окружность описанная вокруг треугольника
  59. Свойства окружности описанной вокруг треугольника
  60. Свойства углов
  61. Формулы радиуса окружности описанной вокруг треугольника
  62. Радиус описанной окружности через три стороны и площадь
  63. Радиус описанной окружности через площадь и три угла
  64. Радиус описанной окружности через сторону и противоположный угол (теорема синусов)
  65. Связь между вписанной и описанной окружностями треугольника
  66. Формулы радиуса окружности описанной вокруг треугольника
  67. Радиус описанной окружности через площадь и три угла
  68. Средняя линия треугольника
  69. Свойства средней линии треугольника
  70. Признаки
  71. Периметр треугольника
  72. Формулы площади треугольника
  73. Формула площади треугольника по стороне и высоте
  74. Формула площади треугольника по трем сторонам
  75. Формула площади треугольника по двум сторонам и углу между ними
  76. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  77. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
  78. Равенство треугольников
  79. Определение
  80. Свойства
  81. Признаки равенства треугольников
  82. По двум сторонам и углу между ними
  83. По стороне и двум прилежащим углам
  84. По трем сторонам
  85. Подобие треугольников
  86. Определение
  87. Признаки подобия треугольников
  88. Свойства
  89. Прямоугольные треугольники
  90. Свойства прямоугольного треугольника
  91. Признаки равенства прямоугольных треугольников
  92. Свойства
  93. Треугольник. Формулы и свойства треугольников.
  94. Типы треугольников
  95. По величине углов
  96. По числу равных сторон
  97. Вершины углы и стороны треугольника
  98. Свойства углов и сторон треугольника
  99. Теорема синусов
  100. Теорема косинусов
  101. Теорема о проекциях
  102. Формулы для вычисления длин сторон треугольника
  103. Медианы треугольника
  104. Свойства медиан треугольника:
  105. Формулы медиан треугольника
  106. Биссектрисы треугольника
  107. Свойства биссектрис треугольника:
  108. Формулы биссектрис треугольника
  109. Высоты треугольника
  110. Свойства высот треугольника
  111. Формулы высот треугольника
  112. Окружность вписанная в треугольник
  113. Свойства окружности вписанной в треугольник
  114. Формулы радиуса окружности вписанной в треугольник
  115. Окружность описанная вокруг треугольника
  116. Свойства окружности описанной вокруг треугольника
  117. Формулы радиуса окружности описанной вокруг треугольника
  118. Связь между вписанной и описанной окружностями треугольника
  119. Средняя линия треугольника
  120. Свойства средней линии треугольника
  121. Периметр треугольника
  122. Формулы площади треугольника
  123. Формула Герона
  124. Равенство треугольников
  125. Признаки равенства треугольников
  126. Первый признак равенства треугольников — по двум сторонам и углу между ними
  127. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  128. Третий признак равенства треугольников — по трем сторонам
  129. Подобие треугольников
  130. Признаки подобия треугольников
  131. Первый признак подобия треугольников
  132. Второй признак подобия треугольников
  133. Третий признак подобия треугольников

Видео:ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольникСкачать

ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольник

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Какая сумма всех сторон треугольника

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Какая сумма всех сторон треугольника

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Какая сумма всех сторон треугольника

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Какая сумма всех сторон треугольника

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Какая сумма всех сторон треугольника

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Какая сумма всех сторон треугольника

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Какая сумма всех сторон треугольника

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Свойства треугольника

1.Свойства углов и сторон треугольника.

Какая сумма всех сторон треугольника

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Какая сумма всех сторон треугольника

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Какая сумма всех сторон треугольника

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

Видео:Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)Скачать

Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)

Треугольник

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

Типы треугольников

Какая сумма всех сторон треугольника

По величине углов

Остроугольный треугольник

Какая сумма всех сторон треугольника

— все углы треугольника острые.

Тупоугольный треугольник

Какая сумма всех сторон треугольника

— один из углов треугольника тупой (больше 90°).

Прямоугольный треугольник

Какая сумма всех сторон треугольника

— один из углов треугольника прямой (равен 90°).

По числу равных сторон

Разносторонний треугольник

Какая сумма всех сторон треугольника

— все три стороны не равны.

Равнобедренный треугольник

Какая сумма всех сторон треугольника

— две стороны равны.

Равносторонний (правильный) треугольник

Какая сумма всех сторон треугольника

— все три стороны равны.

Видео:Почему каждая сторона треугольника меньше суммы двух других сторон?Скачать

Почему каждая сторона треугольника меньше суммы двух других сторон?

Вершины, углы и стороны треугольника

Какая сумма всех сторон треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы

  • если α > β , тогда a > b
  • если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a sin α = b sin β = c sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 b c · cos α
b 2 = a 2 + c 2 — 2 a c · cos β
c 2 = a 2 + b 2 — 2 a b · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β
b = a cos γ + c cos α;
c = a cos β + b cos α;

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 2 3 2 m b 2 + m c 2 — m a 2

b = 2 3 2 m a 2 + m c 2 — m b 2

c = 2 3 2 m a 2 + m b 2 — m c 2

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Медианы треугольника

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Какая сумма всех сторон треугольника

Свойства медиан треугольника

  1. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан называется центроидом.

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO OD = BO OE = CO OF = 2 1

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников

S ∆AOF = S ∆AOE = S ∆BOF = S ∆BOD = S ∆COD = S ∆COE

  • Из векторов, образующих медианы, можно составить треугольник
  • Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    m a = 1 2 2 b 2 + 2 c 2 — a 2

    m b = 1 2 2 a 2 + 2 c 2 — b 2

    m c = 1 2 2 a 2 + 2 b 2 — c 2

    Видео:Лайфхак для школьников\Теорема: каждая сторона треугольника меньше суммы двух других сторонСкачать

    Лайфхак для школьников\\Теорема: каждая сторона треугольника меньше суммы двух других сторон

    Биссектрисы треугольника

    Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

    Какая сумма всех сторон треугольника

    Свойства биссектрис треугольника

    1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
    AE AB = EC BC

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

    Угол между l c и l c ‘ = 90°

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
  • Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны

    l a = 2 b c p p — a b + c

    l b = 2 a c p p — b a + c

    l c = 2 a b p p — c a + b

    где p = a + b + c 2 — полупериметр треугольника.

    Формулы биссектрис треугольника через две стороны и угол

    l a = 2 b c cos α 2 b + c

    l b = 2 a c cos β 2 a + c

    l c = 2 a b cos γ 2 a + b

    Видео:Мошенники уже думали, что нашли легкую добычу. Ох, как они ошибались!Скачать

    Мошенники уже думали, что нашли легкую добычу. Ох, как они ошибались!

    Высоты треугольника

    Какая сумма всех сторон треугольника

    Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

    В зависимости от типа треугольника высота может содержаться:

    • внутри треугольника — для остроугольного треугольника;
    • совпадать с его стороной — для катета прямоугольного треугольника;
    • проходить вне треугольника — для острых углов тупоугольного треугольника.

    Свойства высот треугольника

    1. Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный.
  • h a : h b : h c = 1 a : 1 b : 1 c = BC : AC : AB

    1 h a : 1 h b : 1 h c = 1 r

    Формулы высот треугольника

    Формулы высот треугольника через сторону и угол

    h a = b sin γ = c sin β

    h b = c sin α = a sin γ

    h c = a sin β = b sin α

    Формулы высот треугольника через сторону и площадь

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Видео:"ПО ФАКТАМ" с Юлией Федоровой. 17.01.2024Скачать

    "ПО ФАКТАМ" с Юлией Федоровой. 17.01.2024

    Окружность вписанная в треугольник

    Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

    Какая сумма всех сторон треугольника

    Свойства окружности вписанной в треугольник

    • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
    • В любой треугольник можно вписать окружность, и только одну.

    Формулы радиуса окружности вписанной в треугольник

    Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру

    Радиус вписанной в треугольник окружности через три стороны

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    Окружность описанная вокруг треугольника

    Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

    Какая сумма всех сторон треугольника

    Свойства окружности описанной вокруг треугольника

    • Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
    • Вокруг любого треугольника можно описать окружность, и только одну.

    Свойства углов

    Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

    Формулы радиуса окружности описанной вокруг треугольника

    Радиус описанной окружности через три стороны и площадь

    Радиус описанной окружности через площадь и три угла

    Радиус описанной окружности через сторону и противоположный угол (теорема синусов)

    Видео:Задача про стороны треугольника. Геометрия 7 класс.Скачать

    Задача про стороны треугольника. Геометрия 7 класс.

    Связь между вписанной и описанной окружностями треугольника

    Какая сумма всех сторон треугольника

    Формулы радиуса окружности описанной вокруг треугольника

    Если d — расстояние между центрами вписанной и описанной окружностей, то

    d 2 = R 2 — 2 R r

    Радиус описанной окружности через площадь и три угла

    Видео:Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

    Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

    Средняя линия треугольника

    Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

    Какая сумма всех сторон треугольника

    Свойства средней линии треугольника

    • Любой треугольник имеет три средних линии.
    • Средняя линия треугольника параллельна основанию и равна его половине.
      MN = 1 2 AC ; KN = 1 2 AB ; KM = 1 2 BC

    MN || AC ; KN || AB ; KM || BC

  • Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника.
    S ∆MBN = 1 4 S ∆ABC ; S ∆MAK = 1 4 S ∆ABC ; S ∆NCK = 1 4 S ∆ABC
  • При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
    ∆MBN

    Признаки

    Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

    Видео:ОВЕН 🎄✨ 15 - 31 января 2024 года. Тароскоп.Скачать

    ОВЕН 🎄✨ 15 - 31 января 2024 года. Тароскоп.

    Периметр треугольника

    Какая сумма всех сторон треугольника

    Периметр треугольника ∆ABC равен сумме длин его сторон.

    Видео:Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторонСкачать

    Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторон

    Формулы площади треугольника

    Какая сумма всех сторон треугольника

    Формула площади треугольника по стороне и высоте

    Какая сумма всех сторон треугольника

    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

    S = 1 2 a · h a ,
    S = 1 2 b · h b ,
    S = 1 2 c · h c ,

    где a, b, c — стороны треугольника,
    ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

    Формула площади треугольника по трем сторонам

    Какая сумма всех сторон треугольника

    Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

    S = p p — a p — b p — c ,

    где p — полупериметр треугольника: p = a + b + c 2
    a, b, c — стороны треугольника.

    Формула площади треугольника по двум сторонам и углу между ними

    Какая сумма всех сторон треугольника

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 1 2 a · b · sin γ ,
    S = 1 2 b · c · sin α ,
    S = 1 2 a · c · sin β ,

    где a, b, c — стороны треугольника,
    γ — угол между сторонами a и b ,
    α — угол между сторонами b и c ,
    β — угол между сторонами a и c .

    Формула площади треугольника по трем сторонам и радиусу описанной окружности

    a, b, c — стороны треугольника,
    R — радиус описанной окружности.

    Формула площади треугольника по трем сторонам и радиусу вписанной окружности

    Какая сумма всех сторон треугольника

    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    r — радиус вписанной окружности,
    p — полупериметр треугольника: p = a + b + c 2

    Видео:Сумма углов треугольникаСкачать

    Сумма углов треугольника

    Равенство треугольников

    Какая сумма всех сторон треугольника

    Определение

    Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

    Свойства

    У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

    Признаки равенства треугольников

    По двум сторонам и углу между ними

    Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

    По стороне и двум прилежащим углам

    Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

    По трем сторонам

    Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

    Видео:Как найти величины углов всех треугольников. Сумма углов треугольника. Геометрия 7 класс.Скачать

    Как найти величины углов всех треугольников. Сумма углов треугольника. Геометрия 7 класс.

    Подобие треугольников

    Какая сумма всех сторон треугольника

    Определение

    Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

    ∆MNK => α = α 1 , β = β 1 , γ = γ 1 и AB MN = BC NK = AC MK = k

    где k — коэффициент подобия.

    Признаки подобия треугольников

    1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
    2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
    3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    S ∆АВС S ∆MNK = k 2

    Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

    Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

    Прямоугольные треугольники

    Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

    Свойства прямоугольного треугольника

    • Какая сумма всех сторон треугольника Сумма двух острых углов прямоугольного треугольника равна 90°.
      Сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника ∠ 1 + ∠ 2 = 90° .
    • Какая сумма всех сторон треугольника

    Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

    Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

    Докажем, что BC=2AC.
    Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
    Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

    Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

    Признаки равенства прямоугольных треугольников

    Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

    1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
    2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
    3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
    4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    Видео:Геометрия 7 класс. Сумма углов треугольникаСкачать

    Геометрия 7 класс. Сумма углов треугольника

    Треугольник. Формулы и свойства треугольников.

    Типы треугольников

    По величине углов

    Какая сумма всех сторон треугольника

    Какая сумма всех сторон треугольника

    Какая сумма всех сторон треугольника

    По числу равных сторон

    Какая сумма всех сторон треугольника

    Какая сумма всех сторон треугольника

    Какая сумма всех сторон треугольника

    Вершины углы и стороны треугольника

    Свойства углов и сторон треугольника

    Какая сумма всех сторон треугольника

    Сумма углов треугольника равна 180°:

    В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

    если α > β , тогда a > b

    если α = β , тогда a = b

    Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

    a + b > c
    b + c > a
    c + a > b

    Теорема синусов

    Стороны треугольника пропорциональны синусам противолежащих углов.

    a=b=c= 2R
    sin αsin βsin γ

    Теорема косинусов

    Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

    a 2 = b 2 + c 2 — 2 bc · cos α

    b 2 = a 2 + c 2 — 2 ac · cos β

    c 2 = a 2 + b 2 — 2 ab · cos γ

    Теорема о проекциях

    Для остроугольного треугольника:

    a = b cos γ + c cos β

    b = a cos γ + c cos α

    c = a cos β + b cos α

    Формулы для вычисления длин сторон треугольника

    Медианы треугольника

    Какая сумма всех сторон треугольника

    Свойства медиан треугольника:

    В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

    Медиана треугольника делит треугольник на две равновеликие части

    Треугольник делится тремя медианами на шесть равновеликих треугольников.

    Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    ma = 1 2 √ 2 b 2 +2 c 2 — a 2

    mb = 1 2 √ 2 a 2 +2 c 2 — b 2

    mc = 1 2 √ 2 a 2 +2 b 2 — c 2

    Биссектрисы треугольника

    Какая сумма всех сторон треугольника

    Свойства биссектрис треугольника:

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны:

    la = 2√ bcp ( p — a ) b + c

    lb = 2√ acp ( p — b ) a + c

    lc = 2√ abp ( p — c ) a + b

    где p = a + b + c 2 — полупериметр треугольника

    Формулы биссектрис треугольника через две стороны и угол:

    la = 2 bc cos α 2 b + c

    lb = 2 ac cos β 2 a + c

    lc = 2 ab cos γ 2 a + b

    Высоты треугольника

    Какая сумма всех сторон треугольника

    Свойства высот треугольника

    Формулы высот треугольника

    ha = b sin γ = c sin β

    hb = c sin α = a sin γ

    hc = a sin β = b sin α

    Окружность вписанная в треугольник

    Какая сумма всех сторон треугольника

    Свойства окружности вписанной в треугольник

    Формулы радиуса окружности вписанной в треугольник

    r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

    Окружность описанная вокруг треугольника

    Какая сумма всех сторон треугольника

    Свойства окружности описанной вокруг треугольника

    Формулы радиуса окружности описанной вокруг треугольника

    R = S 2 sin α sin β sin γ

    R = a 2 sin α = b 2 sin β = c 2 sin γ

    Связь между вписанной и описанной окружностями треугольника

    Средняя линия треугольника

    Свойства средней линии треугольника

    Какая сумма всех сторон треугольника

    MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

    MN || AC KN || AB KM || BC

    Периметр треугольника

    Какая сумма всех сторон треугольника

    Периметр треугольника ∆ ABC равен сумме длин его сторон

    Формулы площади треугольника

    Какая сумма всех сторон треугольника

    Формула Герона

    S =a · b · с
    4R

    Равенство треугольников

    Признаки равенства треугольников

    Первый признак равенства треугольников — по двум сторонам и углу между ними

    Второй признак равенства треугольников — по стороне и двум прилежащим углам

    Третий признак равенства треугольников — по трем сторонам

    Подобие треугольников

    Какая сумма всех сторон треугольника

    ∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

    где k — коэффициент подобия

    Признаки подобия треугольников

    Первый признак подобия треугольников

    Второй признак подобия треугольников

    Третий признак подобия треугольников

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

  • Поделиться или сохранить к себе: