В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Определение высоты треугольника
Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.
Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).
Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).
Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать
Высота в разных видах треугольников
В зависимости от вида фигуры высота может:
- проходить внутри треугольника (в остроугольном △);
- проходить за рамками треугольника (в тупоугольном △);
- являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
Видео:№955. Высота треугольника, равная 10 см, делит основание на два отрезка, равные 10 см и 4 см.НайдитеСкачать
Свойства высоты треугольника
Свойство 1
Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).
- в остроугольном треугольнике;
- в тупоугольном треугольнике;
- в прямоугольном треугольнике.
Вершина A является, в т.ч., точкой пересечения высот.
Свойство 2
При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:
- △ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
- △AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
- △ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB = ∠BFE, ∠CAB = ∠BEF).
Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.
Свойство 3
Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.
Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.
Свойство 4
Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.
Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.
Видео:Геометрия Высота треугольника разбивает его основание на два отрезка с длинами 8 и 9. Найдите длинуСкачать
Свойства высот треугольника
Видео:Построение высоты в треугольникеСкачать
свойства высоты в треугольнике
Свойство 1
Высоты треугольника или их продолжения пересекаются в одной точке — ортоцентре треугольника.
Свойство 2
Если AD, BE, CF — высоты треугольника ABC, O — точка пересечения этих высот или их продолжений, то:
Свойство 3
Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, подобных между собой и подобных исходному треугольнику:
Высота на сторону c вычисляется по формулам:
Видео:Свойство биссектрисы треугольника с доказательствомСкачать
Высота треугольника разбивает его основание на два отрезка
Высота треугольника разбивает его основание на два отрезка с длинами 8 и 9. Найдите длину этой высоты, если известно, что другая высота треугольника делит ее пополам.
Решение:
Пусть BH — высота.
AH=8 и CH=9
Высота AL пересекает высоту BH в точке K:
BK=KH=x
Треугольники ∆AKH, ∆BLK и ∆BCH подобные.
Они прямоугольные в ∆AKH, ∆BLK т.к. углы AKH и BKL равны как вертикальные,
а ∆BLK, ∆BCH имеют общий угол B.
KH/AH=CH/BH
x/8=9/2x
x•2x=9•8
2x 2 =72
x 2 =36
x=6
Видео вебинара, где рассмотрено решение этой задачи и не только.
Кликните СЮДА, чтобы посмотреть видео.
Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
🔍 Видео
Высота, биссектриса, медиана. 7 класс.Скачать
ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Высоты треугольника.Скачать
Найти отношение отрезков, на которые высота треугольника делит сторону | Геометрия ОГЭ Геометрия ЕГЭСкачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Высота в прямоугольном треугольнике. 8 класс.Скачать
Вычисляем высоту через координаты вершин 1Скачать
Медиана, биссектриса, высота треугольника | ГеометрияСкачать
№535. Докажите, что биссектриса треугольника делит противоположную сторону на отрезки,Скачать
8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать
17. Медианы, биссектрисы и высоты треугольникаСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Задача, которую боятсяСкачать
3 свойства биссектрисы #shortsСкачать