Как указывать размеры треугольника

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Содержание
  1. Определение треугольника
  2. Классификация треугольников
  3. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  4. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  5. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  6. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  7. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  8. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  9. Свойства треугольника
  10. 1.Свойства углов и сторон треугольника.
  11. 2.Теорема синусов.
  12. 3. Теорема косинусов.
  13. 4. Теорема о проекциях
  14. Медианы треугольника
  15. Свойства медиан треугольника:
  16. Формулы медиан треугольника
  17. Треугольник. Формулы и свойства треугольников.
  18. Типы треугольников
  19. По величине углов
  20. По числу равных сторон
  21. Вершины углы и стороны треугольника
  22. Свойства углов и сторон треугольника
  23. Теорема синусов
  24. Теорема косинусов
  25. Теорема о проекциях
  26. Формулы для вычисления длин сторон треугольника
  27. Медианы треугольника
  28. Свойства медиан треугольника:
  29. Формулы медиан треугольника
  30. Биссектрисы треугольника
  31. Свойства биссектрис треугольника:
  32. Формулы биссектрис треугольника
  33. Высоты треугольника
  34. Свойства высот треугольника
  35. Формулы высот треугольника
  36. Окружность вписанная в треугольник
  37. Свойства окружности вписанной в треугольник
  38. Формулы радиуса окружности вписанной в треугольник
  39. Окружность описанная вокруг треугольника
  40. Свойства окружности описанной вокруг треугольника
  41. Формулы радиуса окружности описанной вокруг треугольника
  42. Связь между вписанной и описанной окружностями треугольника
  43. Средняя линия треугольника
  44. Свойства средней линии треугольника
  45. Периметр треугольника
  46. Формулы площади треугольника
  47. Формула Герона
  48. Равенство треугольников
  49. Признаки равенства треугольников
  50. Первый признак равенства треугольников — по двум сторонам и углу между ними
  51. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  52. Третий признак равенства треугольников — по трем сторонам
  53. Подобие треугольников
  54. Признаки подобия треугольников
  55. Первый признак подобия треугольников
  56. Второй признак подобия треугольников
  57. Третий признак подобия треугольников
  58. Треугольник
  59. Типы треугольников
  60. По величине углов
  61. Остроугольный треугольник
  62. Тупоугольный треугольник
  63. Прямоугольный треугольник
  64. По числу равных сторон
  65. Разносторонний треугольник
  66. Равнобедренный треугольник
  67. Равносторонний (правильный) треугольник
  68. Вершины, углы и стороны треугольника
  69. Свойства углов и сторон треугольника
  70. Сумма углов треугольника равна 180°
  71. В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы
  72. Сумма длин двух любых сторон треугольника больше длины оставшейся стороны
  73. Теорема синусов
  74. Теорема косинусов
  75. Теорема о проекциях
  76. Формулы для вычисления длин сторон треугольника
  77. Формулы сторон через медианы
  78. Медианы треугольника
  79. Свойства медиан треугольника
  80. Формулы медиан треугольника
  81. Формулы медиан треугольника через стороны
  82. Биссектрисы треугольника
  83. Свойства биссектрис треугольника
  84. Формулы биссектрис треугольника
  85. Формулы биссектрис треугольника через стороны
  86. Формулы биссектрис треугольника через две стороны и угол
  87. Высоты треугольника
  88. Свойства высот треугольника
  89. Формулы высот треугольника
  90. Формулы высот треугольника через сторону и угол
  91. Формулы высот треугольника через сторону и площадь
  92. Формулы высот треугольника через две стороны и радиус описанной окружности
  93. Окружность вписанная в треугольник
  94. Свойства окружности вписанной в треугольник
  95. Формулы радиуса окружности вписанной в треугольник
  96. Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру
  97. Радиус вписанной в треугольник окружности через три стороны
  98. Формулы высот треугольника через две стороны и радиус описанной окружности
  99. Окружность описанная вокруг треугольника
  100. Свойства окружности описанной вокруг треугольника
  101. Свойства углов
  102. Формулы радиуса окружности описанной вокруг треугольника
  103. Радиус описанной окружности через три стороны и площадь
  104. Радиус описанной окружности через площадь и три угла
  105. Радиус описанной окружности через сторону и противоположный угол (теорема синусов)
  106. Связь между вписанной и описанной окружностями треугольника
  107. Формулы радиуса окружности описанной вокруг треугольника
  108. Радиус описанной окружности через площадь и три угла
  109. Средняя линия треугольника
  110. Свойства средней линии треугольника
  111. Признаки
  112. Периметр треугольника
  113. Формулы площади треугольника
  114. Формула площади треугольника по стороне и высоте
  115. Формула площади треугольника по трем сторонам
  116. Формула площади треугольника по двум сторонам и углу между ними
  117. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  118. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
  119. Равенство треугольников
  120. Определение
  121. Свойства
  122. Признаки равенства треугольников
  123. По двум сторонам и углу между ними
  124. По стороне и двум прилежащим углам
  125. По трем сторонам
  126. Подобие треугольников
  127. Определение
  128. Признаки подобия треугольников
  129. Свойства
  130. Прямоугольные треугольники
  131. Свойства прямоугольного треугольника
  132. Признаки равенства прямоугольных треугольников
  133. Свойства

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Как указывать размеры треугольника

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Как указывать размеры треугольника

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Как указывать размеры треугольника

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Как указывать размеры треугольника

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Как указывать размеры треугольника

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Как указывать размеры треугольника

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Как указывать размеры треугольника

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Свойства треугольника

1.Свойства углов и сторон треугольника.

Как указывать размеры треугольника

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Как указывать размеры треугольника

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Как указывать размеры треугольника

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

Видео:КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 классСкачать

КАК ИЗМЕРИТЬ УГЛЫ ТРЕУГОЛЬНИКА ТРАНСПОРТИРОМ? Примеры | МАТЕМАТИКА 5 класс

Треугольник. Формулы и свойства треугольников.

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Типы треугольников

По величине углов

Как указывать размеры треугольника

Как указывать размеры треугольника

Как указывать размеры треугольника

По числу равных сторон

Как указывать размеры треугольника

Как указывать размеры треугольника

Как указывать размеры треугольника

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Как указывать размеры треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Медианы треугольника

Как указывать размеры треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Биссектрисы треугольника

Как указывать размеры треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Высоты треугольника

Как указывать размеры треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Окружность вписанная в треугольник

Как указывать размеры треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Окружность описанная вокруг треугольника

Как указывать размеры треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Связь между вписанной и описанной окружностями треугольника

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Средняя линия треугольника

Свойства средней линии треугольника

Как указывать размеры треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Периметр треугольника

Как указывать размеры треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Формулы площади треугольника

Как указывать размеры треугольника

Формула Герона

S =a · b · с
4R

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Подобие треугольников

Как указывать размеры треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Виды треугольниковСкачать

Виды треугольников

Треугольник

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Видео:Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

Типы треугольников

Как указывать размеры треугольника

По величине углов

Остроугольный треугольник

Как указывать размеры треугольника

— все углы треугольника острые.

Тупоугольный треугольник

Как указывать размеры треугольника

— один из углов треугольника тупой (больше 90°).

Прямоугольный треугольник

Как указывать размеры треугольника

— один из углов треугольника прямой (равен 90°).

По числу равных сторон

Разносторонний треугольник

Как указывать размеры треугольника

— все три стороны не равны.

Равнобедренный треугольник

Как указывать размеры треугольника

— две стороны равны.

Равносторонний (правильный) треугольник

Как указывать размеры треугольника

— все три стороны равны.

Вершины, углы и стороны треугольника

Как указывать размеры треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы

  • если α > β , тогда a > b
  • если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a sin α = b sin β = c sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 b c · cos α
b 2 = a 2 + c 2 — 2 a c · cos β
c 2 = a 2 + b 2 — 2 a b · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β
b = a cos γ + c cos α;
c = a cos β + b cos α;

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 2 3 2 m b 2 + m c 2 — m a 2

b = 2 3 2 m a 2 + m c 2 — m b 2

c = 2 3 2 m a 2 + m b 2 — m c 2

Медианы треугольника

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Как указывать размеры треугольника

Свойства медиан треугольника

  1. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан называется центроидом.

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO OD = BO OE = CO OF = 2 1

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников

S ∆AOF = S ∆AOE = S ∆BOF = S ∆BOD = S ∆COD = S ∆COE

  • Из векторов, образующих медианы, можно составить треугольник
  • Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    m a = 1 2 2 b 2 + 2 c 2 — a 2

    m b = 1 2 2 a 2 + 2 c 2 — b 2

    m c = 1 2 2 a 2 + 2 b 2 — c 2

    Биссектрисы треугольника

    Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

    Как указывать размеры треугольника

    Свойства биссектрис треугольника

    1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
    AE AB = EC BC

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

    Угол между l c и l c ‘ = 90°

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
  • Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны

    l a = 2 b c p p — a b + c

    l b = 2 a c p p — b a + c

    l c = 2 a b p p — c a + b

    где p = a + b + c 2 — полупериметр треугольника.

    Формулы биссектрис треугольника через две стороны и угол

    l a = 2 b c cos α 2 b + c

    l b = 2 a c cos β 2 a + c

    l c = 2 a b cos γ 2 a + b

    Высоты треугольника

    Как указывать размеры треугольника

    Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

    В зависимости от типа треугольника высота может содержаться:

    • внутри треугольника — для остроугольного треугольника;
    • совпадать с его стороной — для катета прямоугольного треугольника;
    • проходить вне треугольника — для острых углов тупоугольного треугольника.

    Свойства высот треугольника

    1. Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный.
  • h a : h b : h c = 1 a : 1 b : 1 c = BC : AC : AB

    1 h a : 1 h b : 1 h c = 1 r

    Формулы высот треугольника

    Формулы высот треугольника через сторону и угол

    h a = b sin γ = c sin β

    h b = c sin α = a sin γ

    h c = a sin β = b sin α

    Формулы высот треугольника через сторону и площадь

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Окружность вписанная в треугольник

    Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

    Как указывать размеры треугольника

    Свойства окружности вписанной в треугольник

    • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
    • В любой треугольник можно вписать окружность, и только одну.

    Формулы радиуса окружности вписанной в треугольник

    Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру

    Радиус вписанной в треугольник окружности через три стороны

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Окружность описанная вокруг треугольника

    Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

    Как указывать размеры треугольника

    Свойства окружности описанной вокруг треугольника

    • Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
    • Вокруг любого треугольника можно описать окружность, и только одну.

    Свойства углов

    Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

    Формулы радиуса окружности описанной вокруг треугольника

    Радиус описанной окружности через три стороны и площадь

    Радиус описанной окружности через площадь и три угла

    Радиус описанной окружности через сторону и противоположный угол (теорема синусов)

    Связь между вписанной и описанной окружностями треугольника

    Как указывать размеры треугольника

    Формулы радиуса окружности описанной вокруг треугольника

    Если d — расстояние между центрами вписанной и описанной окружностей, то

    d 2 = R 2 — 2 R r

    Радиус описанной окружности через площадь и три угла

    Средняя линия треугольника

    Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

    Как указывать размеры треугольника

    Свойства средней линии треугольника

    • Любой треугольник имеет три средних линии.
    • Средняя линия треугольника параллельна основанию и равна его половине.
      MN = 1 2 AC ; KN = 1 2 AB ; KM = 1 2 BC

    MN || AC ; KN || AB ; KM || BC

  • Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника.
    S ∆MBN = 1 4 S ∆ABC ; S ∆MAK = 1 4 S ∆ABC ; S ∆NCK = 1 4 S ∆ABC
  • При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
    ∆MBN

    Признаки

    Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

    Периметр треугольника

    Как указывать размеры треугольника

    Периметр треугольника ∆ABC равен сумме длин его сторон.

    Формулы площади треугольника

    Как указывать размеры треугольника

    Формула площади треугольника по стороне и высоте

    Как указывать размеры треугольника

    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

    S = 1 2 a · h a ,
    S = 1 2 b · h b ,
    S = 1 2 c · h c ,

    где a, b, c — стороны треугольника,
    ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

    Формула площади треугольника по трем сторонам

    Как указывать размеры треугольника

    Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

    S = p p — a p — b p — c ,

    где p — полупериметр треугольника: p = a + b + c 2
    a, b, c — стороны треугольника.

    Формула площади треугольника по двум сторонам и углу между ними

    Как указывать размеры треугольника

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 1 2 a · b · sin γ ,
    S = 1 2 b · c · sin α ,
    S = 1 2 a · c · sin β ,

    где a, b, c — стороны треугольника,
    γ — угол между сторонами a и b ,
    α — угол между сторонами b и c ,
    β — угол между сторонами a и c .

    Формула площади треугольника по трем сторонам и радиусу описанной окружности

    a, b, c — стороны треугольника,
    R — радиус описанной окружности.

    Формула площади треугольника по трем сторонам и радиусу вписанной окружности

    Как указывать размеры треугольника

    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    r — радиус вписанной окружности,
    p — полупериметр треугольника: p = a + b + c 2

    Равенство треугольников

    Как указывать размеры треугольника

    Определение

    Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

    Свойства

    У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

    Признаки равенства треугольников

    По двум сторонам и углу между ними

    Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

    По стороне и двум прилежащим углам

    Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

    По трем сторонам

    Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

    Подобие треугольников

    Как указывать размеры треугольника

    Определение

    Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

    ∆MNK => α = α 1 , β = β 1 , γ = γ 1 и AB MN = BC NK = AC MK = k

    где k — коэффициент подобия.

    Признаки подобия треугольников

    1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
    2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
    3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    S ∆АВС S ∆MNK = k 2

    Прямоугольные треугольники

    Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

    Свойства прямоугольного треугольника

    • Как указывать размеры треугольника Сумма двух острых углов прямоугольного треугольника равна 90°.
      Сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника ∠ 1 + ∠ 2 = 90° .
    • Как указывать размеры треугольника

    Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

    Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

    Докажем, что BC=2AC.
    Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
    Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

    Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

    Признаки равенства прямоугольных треугольников

    Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

    1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
    2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
    3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
    4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

  • Поделиться или сохранить к себе: