Как проводить высоты тупоугольного треугольника

Как проводить высоты треугольника

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Как построить высоту треугольника

Рассмотрим, как построить высоту треугольника с помощью чертежного угольника.

Чтобы построить высоту остроугольного треугольника, надо приложить угольник так, чтобы одна сторона прямого угла проходила через вершину треугольника, а вторая — через противоположную этой вершине сторону.

Как проводить высоты тупоугольного треугольника

AK — высота треугольника ABC, проведённая из вершины A к противолежащей стороне BC.

Как проводить высоты тупоугольного треугольникаBF⊥AC.

BF — высота треугольника ABC, опущенная из вершины B на сторону AC.

Как проводить высоты тупоугольного треугольника

CH — высота треугольника ABC, проведённая из вершины C к стороне AB.

Все высоты треугольника пересекаются в одной точке.

Как проводить высоты тупоугольного треугольникаВ остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Если требуется построить все высоты треугольника, достаточно построить две, а третью провести из вершины треугольника через точку пересечения двух высот.

В прямоугольном треугольнике две стороны (катеты) являются также его высотами. Остаётся построить третью высоту.

Как проводить высоты тупоугольного треугольникаУгольник прикладываем прямым углом так, чтобы одна сторона проходила через гипотенузу, а другая — через прямой угол.

CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C к гипотенузе AB.

Как проводить высоты тупоугольного треугольника

Точка пересечения высот прямоугольного треугольника — вершина прямого угла.

Высоты AC, BC и CD прямоугольного треугольника ABC пересекаются в точке C, ∠C=90°.

В тупоугольном треугольнике проще всего построить высоту, выходящую из вершины тупого угла.

Как проводить высоты тупоугольного треугольника

Прикладываем угольник прямым углом так, чтобы одна его сторона проходила через наибольшую сторону треугольника, а другая — через тупой угол.

AP — высота тупоугольного треугольника ABC, проведённая из вершины тупого угла A к стороне BC.

Только высота, проведённая из вершины тупого угла, лежит внутри треугольника. Две другие высоты находятся вне него.

Высоты тупоугольного треугольника, выходящие из вершин острых углов, проведены не к противолежащим сторонам, а к прямым, содержащим эти стороны.

Чтобы построить высоту, продлеваем противолежащую сторону и прикладываем угольник прямым углом таким образом, чтобы одна сторона угольника проходила через построенную прямую, а другая — через вершину острого угла.

Как проводить высоты тупоугольного треугольника

BM — высота тупоугольного треугольника ABC, проведённая из вершины острого угла B к прямой, содержащей противолежащую сторону AC.

Как проводить высоты тупоугольного треугольникаCN⊥AB,

CN — высота тупоугольного треугольника ABC, проведённая из вершины острого угла С к прямой, содержащей противолежащую сторону AB.

Как проводить высоты тупоугольного треугольника

Точка пересечения высот тупоугольного треугольника лежит вне него, за тупым углом, напротив наибольшей стороны.

Чтобы построить точку пересечения высот треугольника ABC, продлим прямые BM, CN и AP до пересечения.

Мы рассмотрели, как строить высоты треугольника с помощью угольника.

Построение высот с помощью циркуля и линейки будем рассматривать в теме «Задачи на построение».

Видео:Высота медиана биссектриса в тупоугольном треугольникеСкачать

Высота  медиана биссектриса в  тупоугольном треугольнике

Как построить высоту треугольника — основные способы

Для решения многих геометрических задач учащемуся нужно уметь быстро построить высоту треугольника. Сделать это можно несколькими простыми для восприятия способами, которые подходят для фигуры разной формы и размера. Весь процесс состоит из определённой последовательности действий, правильно выполнить которые сможет каждый школьник.

Как проводить высоты тупоугольного треугольника

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Как проводить высоты тупоугольного треугольника

Как проводить высоты тупоугольного треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Как проводить высоты тупоугольного треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Как построить высоту треугольника — основные способы

Как проводить высоты тупоугольного треугольника

Видео:Высоты треугольника.Скачать

Высоты треугольника.

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Как проводить высоты тупоугольного треугольника

Как проводить высоты тупоугольного треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Как проводить высоты тупоугольного треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Как построить высоту треугольника — основные способы

Как проводить высоты тупоугольного треугольника

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Как проводить высоты тупоугольного треугольника

Как проводить высоты тупоугольного треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Как проводить высоты тупоугольного треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Как построить высоту треугольника

Рассмотрим, как построить высоту треугольника с помощью чертежного угольника.

Чтобы построить высоту остроугольного треугольника, надо приложить угольник так, чтобы одна сторона прямого угла проходила через вершину треугольника, а вторая — через противоположную этой вершине сторону.

Как проводить высоты тупоугольного треугольника

AK — высота треугольника ABC, проведённая из вершины A к противолежащей стороне BC.

Как проводить высоты тупоугольного треугольникаBF⊥AC.

BF — высота треугольника ABC, опущенная из вершины B на сторону AC.

Как проводить высоты тупоугольного треугольника

CH — высота треугольника ABC, проведённая из вершины C к стороне AB.

Все высоты треугольника пересекаются в одной точке.

Как проводить высоты тупоугольного треугольникаВ остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Если требуется построить все высоты треугольника, достаточно построить две, а третью провести из вершины треугольника через точку пересечения двух высот.

В прямоугольном треугольнике две стороны (катеты) являются также его высотами. Остаётся построить третью высоту.

Как проводить высоты тупоугольного треугольникаУгольник прикладываем прямым углом так, чтобы одна сторона проходила через гипотенузу, а другая — через прямой угол.

CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C к гипотенузе AB.

Как проводить высоты тупоугольного треугольника

Точка пересечения высот прямоугольного треугольника — вершина прямого угла.

Высоты AC, BC и CD прямоугольного треугольника ABC пересекаются в точке C, ∠C=90°.

В тупоугольном треугольнике проще всего построить высоту, выходящую из вершины тупого угла.

Как проводить высоты тупоугольного треугольника

Прикладываем угольник прямым углом так, чтобы одна его сторона проходила через наибольшую сторону треугольника, а другая — через тупой угол.

AP — высота тупоугольного треугольника ABC, проведённая из вершины тупого угла A к стороне BC.

Только высота, проведённая из вершины тупого угла, лежит внутри треугольника. Две другие высоты находятся вне него.

Высоты тупоугольного треугольника, выходящие из вершин острых углов, проведены не к противолежащим сторонам, а к прямым, содержащим эти стороны.

Чтобы построить высоту, продлеваем противолежащую сторону и прикладываем угольник прямым углом таким образом, чтобы одна сторона угольника проходила через построенную прямую, а другая — через вершину острого угла.

Как проводить высоты тупоугольного треугольника

BM — высота тупоугольного треугольника ABC, проведённая из вершины острого угла B к прямой, содержащей противолежащую сторону AC.

Как проводить высоты тупоугольного треугольникаCN⊥AB,

CN — высота тупоугольного треугольника ABC, проведённая из вершины острого угла С к прямой, содержащей противолежащую сторону AB.

Как проводить высоты тупоугольного треугольника

Точка пересечения высот тупоугольного треугольника лежит вне него, за тупым углом, напротив наибольшей стороны.

Чтобы построить точку пересечения высот треугольника ABC, продлим прямые BM, CN и AP до пересечения.

Мы рассмотрели, как строить высоты треугольника с помощью угольника.

Построение высот с помощью циркуля и линейки будем рассматривать в теме «Задачи на построение».

🌟 Видео

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Высоты в тупоугольном треугольникеСкачать

Высоты в тупоугольном треугольнике

Высота в тупоугольном треугольнике #егэ #математика #умскулСкачать

Высота в тупоугольном треугольнике #егэ #математика #умскул

32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

32. Остроугольный, прямоугольный и тупоугольный треугольники

Точка пересечения высот треугольника.Скачать

Точка пересечения высот треугольника.

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

Высота в прямоугольном треугольнике. Как найти? Полезная формулаСкачать

Высота в прямоугольном треугольнике. Как найти? Полезная формула

Как построить все высоты в тупоугольном треугольнике #shortsСкачать

Как построить все высоты в тупоугольном треугольнике #shorts

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе: