Как правильно записывать треугольник

Обозначение геометрических фигур буквами

В математике есть правило: обозначать геометрические фигуры заглавными буквами латинского алфавита. Сегодня мы научимся этому.

Точка

Как правильно записывать треугольник

точка А, точка С, точка D, точка Е и точка F.

Какая точка лежит на прямой?

Как правильно записывать треугольник

Отрезок

Как правильно записывать треугольник

отрезок AD, отрезок СВ, отрезок FE

Сколько всего отрезков на данном чертеже?

Как правильно записывать треугольник

Ответ: 6 отрезков.

Ломаная линия

Как правильно записывать треугольник

А эта ломаная линия совсем по-другому, потому что соединение точек у неё другое:

Как правильно записывать треугольник

Ломаная линия ACDFE

Прочитаю название следующей ломаной линии:

Как правильно записывать треугольник

Ломаная линия AFDCE

Многоугольники

Как правильно записывать треугольник

Угол

Как правильно записывать треугольник

Угол обозначается тремя буквами. В середине указывается буква, которая обозначает вершину угла.

1 угол: угол BAC или CAB с вершиной А

2 угол: угол AOD или DOA с вершиной О

3 угол: угол AED или DEA с вершиной Е

4 угол: угол BCD или DCB с вершиной С

Поделись с друзьями в социальных сетях:

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Треугольник

Треугольник — это замкнутая ломаная линия, состоящая из трёх звеньев:

Как правильно записывать треугольник

Вершины ломаной называются вершинами треугольника, а её звенья — сторонами треугольника. Углы, образованные двумя сторона треугольника, называются углами треугольника:

Как правильно записывать треугольник

В треугольнике ABC вершины A, B и C — это вершины треугольника, звенья AB, BC и CA — стороны треугольника. Три угла — ∠ABC, ∠BCA и ∠CAB — углы треугольника. Часто углы треугольника обозначаются только одной буквой: ∠A, ∠B, ∠C.

Треугольник обычно обозначается тремя буквами, стоящими при его вершинах. Например, треугольник ABC, или BCA, или CBA. Вместо слова треугольник часто используется знак Как правильно записывать треугольник. Так, запись Как правильно записывать треугольникABC будет читаться: треугольник ABC .

У каждого треугольника 3 вершины, 3 стороны и 3 угла.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Высота

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на его основание. Высота треугольника может быть опущена и на продолжение основания.

Как правильно записывать треугольник

Отрезок BN — это высота Как правильно записывать треугольникABC. Отрезок EL высота Как правильно записывать треугольникDEF, опущенная на продолжение стороны DF.

Длина высоты — это длина отрезка от вершины угла до пересечения с основанием.

Каждый треугольник имеет три высоты.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Биссектриса

Биссектриса угла треугольника — прямая, делящая угол треугольника пополам. Длина отрезка этой прямой от вершины угла до точки пересечения с противоположной стороной называется длиной биссектрисы.

Как правильно записывать треугольник

Отрезок BN — это биссектриса Как правильно записывать треугольникABC.

Каждый треугольник имеет три биссектрисы.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Медиана

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Длина этого отрезка называется длиной медианы.

Как правильно записывать треугольник

Отрезок BN — это медиана Как правильно записывать треугольникABC.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Геометрия

План урока:

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Как выглядит треугольник?

В выходной день Глеб с родителями ехали в парк. Мальчик заметил, что вдоль дороги стояла непонятная табличка, увидев которую, отец поехал очень медленно.

«Что это такое?» – поинтересовался ребенок. Папа рассказал, что это дорожный знак, который предупреждает о трудностях на пути. Глебу очень понравился знак, а особенно его форма. Отец продолжил рассказ о знаках: «Форма знака о многом говорит водителю, ведь при плохой видимости автолюбитель видит только форму, а не надпись. Поэтому все предупреждающие знаки – треугольные». «А что такое треугольные?» – не унимался мальчик. Найти ответ на этот и многие другие вопросы папе помог наш сегодняшний урок.

Вначале, давайте разберемся, что же такое треугольник и из чего он состоит.

В повседневной жизни нас окружает масса предметов имеющих треугольную форму. Например:

Часы, воздушный змей, кусочек торта, пиццы, арбуза, салатники, рамки для фотографий, пузырек парфюма – этот список можно продолжать бесконечно. Но что же такое треугольник?

Приведем примеры треугольников:

Исходя из определения, каждый рисунок состоит из трех отрезков. В геометрии такие отрезки называют сторонами треугольника.

Кроме отрезков, составляющей частью фигуры являются три точки, которые принято называть вершинами.

В геометрии, вершины треугольника принято обозначать заглавными буквами латиницы: A,C,D,B.

Начертим треугольник. Вершины, обозначим буквами A,C,D.

Данная геометрическая фигура имеет три вершины A,C,D и три стороны АС, CD, DА.

А как же на письме показать, что данная фигура является треугольником?

Очень интересным является то, что записывать название, можно перечисляя вершины в любом порядке.

Можно записать: ∆NOK, ∆OKN, ∆KNО. Каждый вариант записи обозначает один и тот же треугольник и является верным.

Само название фигуры «Треугольник» предполагает, что в состав должны входить три угла. Так ли это?

Внимательно рассмотрим рисунок:

Действительно, мы видим три угла, которые отмечены дугами: ∠RFP,∠FPR, ∠PRF(мы уже знаем, что буква, обозначающая вершину угла всегда записывается в середине) или∠F, ∠P,∠R.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Виды треугольников

Все геометрические фигуры, имеющие треугольную форму,делятся на группы по двум направлениям:

Давайте рассмотрим, на какие группы делятся треугольники по углам:

Теперь, познакомимся с группами треугольников по сторонам(на рисунках равные стороны принято обозначать одинаковым количеством черточек):

Постарайтесь запомнить все виды треугольников, так как на протяжении всего учебного процесса, вам часто придется сталкиваться с выполнением заданий на данную тему.

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Равенство треугольников

Случаются ситуации, когда точно известно, что два треугольника равны, а что же в таком случае можно сказать про углы и стороны таких треугольников?

Нам дано: ∆ABC = ∆A1B1C1. Равны ли соответствующие стороны и углы данных фигур?

По условию треугольники равны. Значит, применяем рассмотренное правило, которое говорит о том, что все соответствующие элементы фигуры равны между собой.

Если ∆ABC = ∆A1B1C1, то равны соответствующие стороны:

и соответствующие углы равны:

Геометрия интересна тем, что большинство её правил нуждаются в доказательствах. Такие правила называют теоремами.

Вместе с этим, имеются и самостоятельные правила, которые называют аксиомами геометрии.

Сегодня мы рассмотрим первую теорему с названием «Первый признак равенства треугольников», и проведем работу по сбору доказательств для данной теоремы.

Два треугольника – ∆OMN и ∆KLT. Известно, что две стороны треугольников и угол между ними равны.

Докажем, что ∆OMN=∆KLT.

Доказательство первого признака равенства треугольников:

Из условия нам известно, что соответствующие углы равны ∠M =∠L, следовательно, мы можем выполнить наложение двух треугольников так, чтобы вершина M совпадала с вершиной L.

Тогда, сторона OM наложится на сторону KL, а сторона MN на отрезок LT. По условию нам известно, что отрезки равны OM=KL, MN=LT, значит, при наложении они совпадут. Получается, что при наложении совпадает угол, и две стороны, следовательно, будут совпадать и оставшиеся стороны ON и KT, то есть ON = KT . Если при наложении совмещаются три стороны и одна вершина, значит, совместятся и две другие вершины KO и TN.

Выходит, что при совмещении совпадают все элементы ∆, а такие ∆ называются равными.

Мы доказали, что ∆OMN=∆KLT.

Еще, нам предстоит познакомиться с несколькими понятиями, без которых продолжать изучение геометрии невозможно.

Начертим прямую АВ. Выберем точку не лежащую на данной прямой. Проведем отрезок СК, соединяющий точку С и прямую АВ, таким образом, чтобы при пересечении СК и АВ образовывался прямой угол (90˚) . Изображенный отрезок СК называют перпендикуляром к прямой.

Доказательство будем проводить в два этапа.

Видео:Разбор 31 варианта ОГЭ по математике 2024 / ПДФ решение + формулы / МатТаймСкачать

Разбор 31 варианта ОГЭ по математике 2024 / ПДФ решение + формулы / МатТайм

Медиана, биссектриса, высота

Рассмотрим ∆АВС. Отметим на отрезке АС середину и обозначим её точкой О. Соединим точки В и О отрезком. Полученный отрезок ВО называют медианой.

Любой треугольная фигура имеет три вершины, из каждой можно провести медиану, следовательно, в одной можно провести три медианы.

Биссектриса

Чтобы рассмотреть понятие биссектрисы треугольника, вспомним определение биссектрисы угла:

На рисунке изображен ∆ОВМ. Из угла О проведем биссектрису (луч, делящий угол пополам)и продолжим её до пересечения со стороной ВМ. Место пересечения отметим точкой С. Отрезок ОС делит угол О пополам(∠ВОС =∠СОМ) и пересекается с противолежащей стороной ВМ.

На рисунке изображена фигура РТК. Из вершины Т проведем перпендикуляр к стороне РК, место пересечения перпендикуляра и стороны фигуры отметим точкой А.∠ТАК =∠ТАР=90˚. Перпендикуляр ТА называют высотой ∆РТК.

Изученные сегодня определения и теоремы являются базовыми в изучении геометрии. Поэтому постарайтесь уделить особое внимание материалу сегодняшнего урока.

🎬 Видео

Как оформлять решение задач по геометрииСкачать

Как оформлять решение задач по геометрии

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Как правильно называть отрезок, угол, треугольник? Разбираемся с основами геометрииСкачать

Как правильно называть отрезок, угол, треугольник? Разбираемся с основами геометрии

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Как исполнить любое желание! 100 техника от Садхгуру!Скачать

Как исполнить любое желание! 100 техника от Садхгуру!

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Можно ли так повернуть налево?/Три задачки для опытных водителейСкачать

Можно ли так повернуть налево?/Три задачки для опытных водителей

Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Задачи с подобными треугольникамиСкачать

Задачи с подобными треугольниками
Поделиться или сохранить к себе: