Как построить треугольник в пространстве

Построить натуральную величину треугольника авс

Натуральная величина треугольника на эпюре Монжа может быть определена: — способом прямоугольного треугольника;

Как построить треугольник в пространстве

Здесь поочередно применяется способ прямоугольного треугольника для определения действительных величин отрезков, составляющих треугольник, а затем, к одному из них методом засечек строятся два других.

Используем Метод преобразования проекций для определения истиной величины треугольника на эпюре Монжа:

Как построить треугольник в пространстве

— Способ вращения вокруг осей перпендикулярных плоскостям проекций;

Как построить треугольник в пространстве

— Вращение вокруг горизонтали представляющих собой линии уровня;

Как построить треугольник в пространстве

Как построить треугольник в пространстве

представляющих собой линии уровня;

— Вращение вокруг следа или способ совмещения с плоскостью проекций;

Как построить треугольник в пространстве

Как построить треугольник в пространстве

Задача на определение натуральной величины плоской фигуры относится к разделу метрические задачи.

Ниже приведены решения одной и той же задачи вышеописанными методами.

9.6.1. Задание:определить натуральную величину треугольника ABC(рис. 9.8), а также угол наклона плоскости треугольника к плоскости П1.

Как построить треугольник в пространстве

1) Решение методом замены плоскостей проекций (рис. 9.9).

Как построить треугольник в пространствеПлоскость треугольника спроецируется в натуральную величину в том случае, если она будет параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC,перпендикулярную к новой плоскости проекций, при второй замене — получают плоскость треугольника, параллельную новой плоскости проекций.

Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1,4новой системы плоскостей проекций П14перпендикулярно к горизонтальной проекции горизонтали h1.В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.

На линиях проекционной связи в новой системе откладывают координатыzточек А, В, С с фронтальной проекции исходной системы плоскостей П12.

Как построить треугольник в пространстве

При соединении новых проекций А4,B4, С4получают прямую линию, в которую спроецировался треугольник ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 – угол α. На чертеже это угол между осью x1,4и проекцией С4А4В4.

Второй этап. Выбираем новую плоскость проекции П5,параллельную плоскости треугольника, т.е. новую ось x4,5проводят параллельно С4А4В4на произвольном расстоянии. Получают новую систе­му П45.Полученный треугольник А5В5С5и есть искомая натуральная величина треугольника ABC.

2) Решение методом вращения вокруг проецирующей оси(рис. 9.10).

Задача решается в два этапа. На первом этапе выполняют вращение так, чтобы плоскость треугольника ABCпреобразовалась в проецирующую плоскость, т.е. стала перпендикулярна к одной из плоскостей проекций. Для этого проводят горизонталь h (h1,h2) через точку А. (построение начинают с фронтальной проекции h2,она проходит через проекцию точки A2и проекцию точки 12 при этомh2 параллельна оси х).Далее находят горизонтальную проекцию h1 горизонтали h (через проекции A1 и 11). Через точку А проводят ось i — ось вращения треугольника так, чтобы она была перпендикулярна к П1. На фронтальной проекции через вершины А2 и В2 проводят следы горизонтальных плоскостей уровня Δ и Σв которых при вращении будут перемещаться точки АиВ. Вершина С принадле­жит плоскости П1поэтому ее плоскостью вращения будет плоскость проекций П1.На горизонтальной проекции, взяв за центр вращения проекцию i1 поворачивают горизонталь А так, чтобы на плоскость П2 она спроецировалась в точку. На чертеже это выразится Как построить треугольник в пространстветем, что h’1 займет новое положение — перпендикулярно к оси х.

При этом на фронтальной проекции А2 остается неизменной, находясь на следе плоскости Σ2 и ее обозначим a2.

На гори­зонтальной проекции поворачиваем оставшиеся вершины В и С во­круг оси i так, чтобы Как построить треугольник в пространстве. На фронтальной проекции вершина В перемещается по следу плоскости Как построить треугольник в пространстве2, а вершина С — по оси х. Соединив новые положения проекций всех вершин треугольника ABC, получают проекцию А’2В’2С’2,сливающуюся в линию. Плоскость треугольника ABC заняла проецирующее положение. На данном этапе, при необходимости, находят угол наклона плоскости треугольника ABC к П1 – угол α .

На втором этапе проводят ось jчерез вершинуС так, чтобы ось была фронтально проецирующая. При этом С’2j’2, а горизонтальная проекция j’1 пройдет через проекцию С’1. Вокруг оси поворачивают треугольник так, чтобы он стал параллелен горизонтальной плоскости проекций. В данной задаче вращают точки А’2 и В’1, вокруг j2 до совмещения с осью х,при этом проекции B’1 и A’1 будут перемещаться параллельно оси хи займут новое положение В»1, и А»1 вершина С оста­нется на месте. Соединив точки между собой, получают новое положение плоскости (оно соответствует натуральной величине треугольника ABC).

3) Решение методом плоскопараллельного перемещения (рис. 9.11).

Задача решается в два этапа. На первом этапе преобразуют чертеж так, чтобы плоскость треугольника ABC стала перпендику­лярна к одной из плоскостей проекций. Для этого проводят в плоскости треугольника горизонталь h (фронтальная проекция А212х,). Каждую вершину треугольника заключают в свою плоскость уровня, параллельную плоскости П1. В рассматриваемом примере вершина С принадлежит плоскости проек­ций П1, А принадлежит плоскости Σ, В — плоскости Δ.

Плоскость треугольника перемещается в пространстве до тех пор, пока горизонталь h1 треугольника не станет перпендикулярна к фронтальной плоскости проекций П2.

Для этого на свободном поле чертежа вычерчивают горизонтальную проекцию треугольника A1 ′ B1 ′ C1 с условием, чтобы А111Как построить треугольник в пространствеП2, а значит А1 ′ 11Как построить треугольник в пространствех. При этом вершины треугольника, перемещаясь каждая в своей плоскости, займут новое положение – (фронтальная проекция А2В2С2 заменится А’2В’2С’2).Соединив эти точки, получают новое положение треугольника ABC, спроецированного в линию, т.е. перпендикулярного к плоскости П2.

Как построить треугольник в пространстве

На втором этапе, чтобы получить натуральную величину треугольника ABC, его плоскость поворачивают до тех пор, пока она не будет параллельна одной из плоскостей проекций. В рассматриваемом решении фронтальную проекцию треугольника А2‘В2‘С2располагают на произвольном расстоянии от оси хпараллельно плоскости П1. При этом вершины А, Ви С треугольника заключают в горизонтально проецирующие плоскости θ, Т, Р. По следам этих плоскостей будут перемещаться горизонтальные проекции вершин А1‘В1‘С1. От нового положения фронтальной проекции А2«В2«С2« проводят линии проекционной связи до пресечения с соответствующими следами плоскостей, в которых они перемещаются (θ1,T1,P1), и получая проекции точек А1» В1» C1«. Соединив эти проекции, получают тре­угольник ABC в натуральную величину.

4) Решение методом вращения вокруг линии уровня(рис.9.12)

Как построить треугольник в пространствеДля решения задачи этим способом необходимо повернуть плоскость треугольника вокруг линии уровня, в данном случае вокруг горизонтали, до положения, параллельного горизонтальной плоскости проекции. Через точку А в плоскости треугольника ABC проводят горизонталь h, фронтальная проекция которой будет параллельна оси х. Отмечают точку 12 и находят ее горизонтальную проекцию 11. Прямая A111 является горизонтальной проекцией h1горизонтали h. Вокруг горизонтали будут вращаться точки В и С. Определяют натуральную величину радиуса вращения точки С .

Для определения натуральной величины радиуса вращения используют любой метод (в данном случае способ прямоугольного треугольника) строят прямоугольный треугольник, в котором O1C1 — один из катетов. Вто­рой катет — разность координат Δzотрезка О2С2, взятого с фронталь­ной проекции. В построенном треугольнике гипотенуза O1C — нату­ральная величина радиуса вращения.

На продолжении перпендикуляра O1C1 откладывают |RBp.| и полу­чают новое положение вершины С после вращения — С . Проекция вер­шины В получается пересечением луча C 11 и перпендикуляра к горизонтальной проекции h1 проведенного через проекцию точки В1.

Треугольник A B C есть искомая натуральная величина тре­угольника ABC.

5) Решение методом совмещения(рис. 9.13).

Как построить треугольник в пространстве

Как построить треугольник в пространстве

Для решения задачи методом совмещения необходимо построить следы плоскости Σ, которой принадлежит треугольник ABC. Для этого проводят в плоскости треугольника ABC фронталь f и находят горизонтальный след этой фронтали – N1. По условию задачи вершина С треугольника принадлежит горизонтальной плоскости проек­ций П1. Тогда горизонтальный след Σ1 плоскости Σпроводят через проекции N1 и C1. Соединив эти две точки и продлив отрезок до пересечения с осью х, находят точку схода следов Σх. Учитывая, что все фронтали плоскости параллельны ее фронтальному следу, фронтальный след Σ2 плоскости Σпроводят через точку Σхпараллельно проекции фронтали f2.

Для нахождения натуральной величины треугольника ABCнеобходимо построить совмещенное положение плоскости Σ с горизонтальной плоскостью проекций П1. Для этого через вершину Апроводят горизонталь h1. На фронтальном следе Σ2 фиксируют точку 22. Ее горизонтальная проекция — точка 21. Точка 2 вращается в плоскости, перпендикулярной к горизонтальному следу плоскости Σ. Поэтому, чтобы построить точку 2 в совмещенном положении 2 , проводят из 21перпендикуляр к горизонтальному следу Σ, а из центра Σх дугу окружности радиусом Σх22 до пересечения с направлением перпендикуляра. Соединив Σх с 2 , получают совмещенное положение фронтального следа Σ — Далее через точку 2 проводят горизонталь h всовмещенном положении. На этой горизонтали находят точку А , проведя перпендикуляр из точки A1 к горизонтальному следу Σ1.

По такой же схеме строят совмещенное положение точки В . Совмещенное положение точки С совпадает с ее горизонтальной проекцией С1 т.е. С1С . Соединив построенные точки, получают треугольник А В С — это и есть натуральная величина треугольника ABC.

Не нашли то, что искали? Воспользуйтесь поиском:

Содержание
  1. Метки
  2. Натуральная величина треугольника с описанием.
  3. Алгоритм определения натуральной величины плоскости:
  4. Замена плоскостей проекции
  5. Плоскопараллельное перемещение
  6. Система координат в пространстве — определение с примерами решения
  7. Система координат в пространстве
  8. Декартова система координат в пространстве
  9. Расстояние между двумя точками
  10. Уравнение сферы и шара
  11. Координаты середины отрезка
  12. Векторы в пространстве и действия над ними
  13. Векторы в пространстве
  14. Действия над векторами в пространстве
  15. Свойства суммы векторов
  16. Правило треугольника сложения векторов
  17. Правило параллелограмма сложения векторов
  18. Правило многоугольника сложения векторов
  19. Коллинеарные и компланарные векторы
  20. Скалярное произведение векторов
  21. Свойства скалярного произведения векторов
  22. Преобразование и подобие в пространстве
  23. Геометрические преобразования в пространстве
  24. Движение и параллельный перенос
  25. Центральная симметрия в пространстве
  26. Симметрия относительно плоскости
  27. Поворот и симметрия относительно оси
  28. Симметрия в природе и технике
  29. Подобие пространственных фигур
  30. Как построить треугольник в пространстве
  31. ПРОЕЦИРУЮЩИЕ ПЛОСКОСТИ И ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ
  32. ПРОЕКЦИИ ТОЧКИ И ПРЯМОЙ, РАСПОЛОЖЕННЫХ НА ПЛОСКОСТИ
  33. ПРОЕКЦИИ ПЛОСКИХ ФИГУР
  34. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ
  35. ПРЯМАЯ, ПРИНАДЛЕЖАЩАЯ ПЛОСКОСТИ
  36. ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ
  37. ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  38. 🔍 Видео

Метки

Как построить треугольник в пространстве

Как построить треугольник в пространстве

Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

Натуральная величина треугольника с описанием.

Натуральная величина треугольника определяется 2 методами:

  1. замена плоскостей проекции;
  2. плоскопараллельное перемещение.

Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».

Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.

Алгоритм определения натуральной величины плоскости:

Замена плоскостей проекции

1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.

Как построить треугольник в пространстве

2.) Строится дополнительная горизонтальная линия 1 1 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.

Как построить треугольник в пространстве

3.) Построив прямую на нижнем рисунке, чертится под углом 90 0 ось Х 1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:

  • от С2 до оси Х;
  • от В2 до оси Х;
  • от А0 до оси Х.

Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.

Как построить треугольник в пространстве

4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В 4 С 4 А 4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.

Как построить треугольник в пространстве

5.) Отмеряются расстояния:

  • от В1 до Х1;
  • от С1 до Х1;
  • от А1 до Х1.

Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).

Как построить треугольник в пространстве6.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»Как построить треугольник в пространстве

Плоскопараллельное перемещение

7.) Откладывается отрезок на оси Х (обозначен синим цветом).

Как построить треугольник в пространстве

8.) Переносятся точки на текущее построение. Как построить треугольник в пространстве

9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. Как построить треугольник в пространстве10.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).Как построить треугольник в пространстве11.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. Как построить треугольник в пространстве12.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:

Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).

Как построить треугольник в пространстве13.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″Как построить треугольник в пространстве14.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.Как построить треугольник в пространстве15.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Как построить треугольник в пространствеПример чертежа на тему «Натуральная величина треугольника» смотрите здесь.

Видео:Построение следов плоскостиСкачать

Построение следов плоскости

Система координат в пространстве — определение с примерами решения

Содержание:

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Система координат в пространстве

Декартова система координат в пространстве

Вы познакомились с декартовой системой координат на плоскости в предыдущих классах. Систему координат в пространстве введём аналогично тому, как это было сделано на плоскости. Рассмотрим три взаимно перпендикулярных оси Ох, Оу и Оz, пересекающихся в точке О, являющейся началом координат. Через каждую пару этих прямых проведём плоскости Оху, 0xz и Оуz (рис. 1). Таким образом вводится система координат в пространстве, при этом

точку О — называют началом координат, прямые Ох, Оу и Оzосями координат, Охось абсцисс, Оуось ординат и Оzось аппликат, плоскости Оху, Оуz и Охzкоординатными плоскостями.

Как построить треугольник в пространстве

Координатные плоскости делят пространство на 8 октант (получетвертей) (рис. 1).

Пусть в пространстве задана произвольная точка А. Через эту точку проведём плоскости, перпендикулярные плоскостям Охz, Оуz и Охz (рис. 2). Одна из этих плоскостей пересечёт ось Ох в точке Ах.

Координату Ах на оси Ох называют координатой х или абсциссой точки А.

Аналогично определяют у — координату (ординату) и z- координату (аппликату) точки А.

Координаты точки А записывают в виде А (х; у; z) или короче (х; у; z). Точки, изображённые на рисунке 3, имеют следующие координаты: А (0; 5; 0), B (4; 0; 0), М (0; 5; 4), К (2; 3; 4), Р (-2; 3; -4). Как построить треугольник в пространстве

Пример:

Пусть в пространстве в декартовой системе координат

задана точка А (2; 3; 4). Где она расположена?

Решение:

От начала координат в положительном направлении осей Ох и Оу отложим отрезки ОАх = 2 и ОАу = 3 (рис. 4).

Через точку Ах проведём прямую, лежащую в плоскости Оху и параллельную оси Оу. А через точку Аy проведём прямую, лежащую в плоскости Оху и параллельную оси Ох. Точку пересечения этих прямых обозначим A1 . Через точку A1 проведём прямую, перпендикулярную плоскости Оху и на ней в положительном направлении Oz отложим отрезок АА1 = 4. Тогда точка А (2; 3; 4) и будет искомой точкой. Как построить треугольник в пространстве

Пользуясь системой координат, созданной для современных программируемых станков и автоматизированных роботов, составляются программы, на основе которых обрабатываются металлы (рис. 5).

Как построить треугольник в пространстве

Расстояние между двумя точками

1.Сначала рассмотрим случай, когда прямая АВ не параллельна оси Оz (рис. 6). Через точки А и В проведём прямые, параллельные оси Оz. И пусть они пересекают плоскость Оху в точках Аz и Вz .

Координаты х и у этих точек соответственно равны координатам х и у точек А, В, а координаты z равны 0.

Теперь через точку В проведём плоскость а, параллельную плоскости Оху. Она пересечёт прямую ААz в некоторой точке С.

По теореме Пифагора: АВ 2 = АС 2 + СВ 2 .

Однако Как построить треугольник в пространстве

Поэтому Как построить треугольник в пространстве

2.Пусть отрезок АВ параллелен оси Оz, тогда Как построить треугольник в пространствеи, так как

Следовательно, расстояние между двумя точками А и В:

Как построить треугольник в пространстве(1)

Примечание. Формула (1) выражает длину диагонали прямоугольного параллелепипеда, измерения которого равны Как построить треугольник в пространстве

Уравнение сферы и шара

Известно, что множество всех точек М (х; у; z), расположенных на расстоянии R от данной точки А (а; Ь; с) образуют сферу (рис. 7). Тогда по формуле (1) координаты всех точек, расположенных на сфере радиуса R с центром в точке А (а; b; с), удовлетворяют равенству Как построить треугольник в пространстве

Отсюда, ясно, что неравенство для точек шара радиуса R с центром в

точке А (а; b; с) имеет вид: Как построить треугольник в пространстве

Как построить треугольник в пространстве

Пример:

Найдите периметр треугольника ABC с вершинами в

Решение:

Р=АВ+АС+ВС периметр треугольника ABC. Воспользовавшись формулой Как построить треугольник в пространстверасстояния между двумя точками, найдём длины сторон треугольника:

Как построить треугольник в пространстве

Следовательно, треугольник ABC равносторонний и его периметр Как построить треугольник в пространстве.

Ответ: Как построить треугольник в пространстве

Координаты середины отрезка

Пусть А (x1; y1;z1) и В (х2; у2; z2) — произвольные точки, точка С (х; у; z) середина отрезка AB (рис. 8). Как построить треугольник в пространстве

Через точки А, В и С проведём прямые, параллельные оси пересекающие плоскость Оху в точках Как построить треугольник в пространствеи Как построить треугольник в пространстве. Тогда по теореме Фалеса точка Сz — середина отрезка АzВz.

Отсюда по формулам нахождения координат середины отрезка на плоскости Как построить треугольник в пространстве

Чтобы найти координату z, нужно вместо плоскости Оху рассмотреть плоскость 0xz или Оуz.

Тогда и для z получим формулу, подобную вышеприведённой.

Как построить треугольник в пространстве

Аналогично, используя координаты концов A и B отрезка AB, по формулам Как построить треугольник в пространстве

находят координаты точки Р(х1;у]; г,), делящей отрезок АВ в отношении X САР: РВ = X).

Доказательство: Для решения задачи используем признак параллелограмма: Четырёхугольник, точка пересечения диагоналей которого делит их пополам, является параллелограммом.

Координаты середины отрезка МК:

Как построить треугольник в пространстве

Координаты середины отрезка NL:

Как построить треугольник в пространстве

Координаты середин отрезков МК и NL равны. Это говорит о том, что отрезки пeрeсeкаются и в точке пeрeсeчeния делятся пополам. Следовательно, четырёхугольник MNLK — параллелограмм.Как построить треугольник в пространстве

В переписке с известным целителем и математиком Абу Али ибн Сино Абу Райхон Беруни задаёт следующий вопрос: «Почему Аристотель и другие (философы) называют шесть сторон?»

Рассматривая шестисторонний куб, Беруни говорит о фигурах «с другим количеством сторон» и добавляет, что «шарообразные фигуры не имеют сторон.» А Ибн Сино отвечает, что «во всех случаях нужно считать, что сторон шесть, так как у каждой фигуры, независимо от её формы, есть три измерения — длина, глубина и ширина».

Здесь Ибн Сино имеет ввиду три координаты, именуемые условно «шесть сторон».

В произведении «Канон Масъуда» Беруни приводит точное математическое определение шести сторон: «Сторон шесть, так как они ограничивают движение фигур по своим измерениям. Измерений три: длина, ширина и глубина. А их в два раза больше самих измерений.»

В предыдущих книгах автор определяет положение небесных тел с помощью двух координат относительно небесной сферы — эклиптического уравнения. Либо через те же координаты, но относительно небесного экватора или горизонта. Однако при определении взаимного расположения звёзд и небесных светил придётся учитывать и случаи затмений. Вот в таких случаях появляется необходимость в третьей сферической координате. Эта необходимость привела Беруни к отказу от теории небесных координат.

Векторы в пространстве и действия над ними

Векторы в пространстве

Понятие вектора в пространстве вводят также как на плоскости.

Вектором в пространстве называют направленный отрезок. Основные понятия, относящиеся к векторам в пространстве, аналогичны этим понятиям на плоскости: длина (модуль), направление вектора, равенство векторов.

Как построить треугольник в пространстве

Координатами вектора с началом в точке А (х1; у1; z1) и концом в точке В (х1; у1; z1) называют числа Как построить треугольник в пространстве, (рис. 17).

Приведем без доказательства свойства векторов, аналогичных свойствам на плоскости.

Также как на плоскости, соответствующие координаты равных векторов равны и, обратно, векторы с равными координатами равны.

Hа основании этого вектор можно обозначить как Как построить треугольник в пространствеили Как построить треугольник в пространствеили кратко Как построить треугольник в пространстве(рис. 18).

Вектор можно записать и без координат Как построить треугольник в пространстве(или Как построить треугольник в пространстве). В этой записи

на первом месте начало вектора, а на втором — конец.

Вектор с координатами, равными нулю, называют нулевым вектором и обозначают Как построить треугольник в пространствеили Как построить треугольник в пространстве, направление этого вектора не определено.

Если начало вектора расположено в начале координат О, а числа а1,

координатами вектора Как построить треугольник в пространстве: Как построить треугольник в пространстве(а1; а2; а3).

Однако вектор в пространстве Как построить треугольник в пространствес началом в точке К(с1; с2; с3) и концом в точке Как построить треугольник в пространствебудет иметь те же координаты: Как построить треугольник в пространстве.

Отсюда следует, что вектор можно приложить к любой точке пространства. В геометрии мы рассматриваем такие свободные векторы. Но в физике, обычно вектор связан с некоторой точкой. Например, воздействие силы приложенная к пружине F на рисунке 19 зависит от точки её приложения.

Длинной вектора называют длину направленного отрезка

изображающего его (рис. 17). Длину вектора Как построить треугольник в пространствезаписывают

такКак построить треугольник в пространстве. Длина вектора Как построить треугольник в пространстве, заданного координатами,

вычисляется по формуле Как построить треугольник в пространстве.

Пример:

Даны точки А (2; 7;-3),В (1; 0; 3), С (-3;-4; 5) и D (-2; 3; -1). Какие из векторов Как построить треугольник в пространствеи Как построить треугольник в пространстверавны между собой?

Решение:

У равных векторов равны соответствующие координаты. Поэтому найдём координаты векторов:

Как построить треугольник в пространстве

Следовательно, Как построить треугольник в пространстве.

Докажите самостоятельно, что Как построить треугольник в пространстве

Действия над векторами в пространстве

Действия над векторами. Сложение векторов, умножение на число и их скалярное произведение определяется также как на плоскости.

Суммой векторов Как построить треугольник в пространствеи Как построить треугольник в пространстве(b1; b2; b3); называют вектор Как построить треугольник в пространстве(рис. 20).

Как построить треугольник в пространстве

Пусть кран на рисунке 20.b движется вдоль вектора Как построить треугольник в пространстве, а груз относительно крана вдоль вектора Как построить треугольник в пространстве. В результате груз движется вдоль вектора Как построить треугольник в пространстве. Поэтому из рисунка 20.с, на котором изображён сюжeт басни русского писателя И.А.Крылова, ясно, что герои басни не смогут сдвинуть телегу с места.

Свойства суммы векторов

Для любых векторов Как построить треугольник в пространстве, Как построить треугольник в пространствеи Как построить треугольник в пространствеимеют место следующие свойства:

a) Как построить треугольник в пространстве— переместительный закон сложения векторов;

b) Как построить треугольник в пространстве— распределительный закон сложения.

Правило треугольника сложения векторов

Для любых точек А, В и С (рис. 21): Как построить треугольник в пространстве

Правило параллелограмма сложения векторов

Если АВСD — параллелограмм (рис. 22), то Как построить треугольник в пространстве

Правило многоугольника сложения векторов

Если точки А, В, С, D и Е — вершины многоугольника (рис. 23), тоКак построить треугольник в пространстве

Как построить треугольник в пространстве

Правило параллелепипеда сложения трёх векторов, не лежащих в одной плоскости. Если АВСDА1В1С1D1 параллелепипед (рис. 24), то

Как построить треугольник в пространстве.

Вектор Как построить треугольник в пространствеКак построить треугольник в пространстве​​​​​​= (Как построить треугольник в пространствеa1; Как построить треугольник в пространствеa2; Как построить треугольник в пространствеa3) — называют умножением вектора

Как построить треугольник в пространстве(a1; a2; a3) на число Как построить треугольник в пространстве(рис. 25). Свойства операции умножения вектора на число.

Для любых векторов Как построить треугольник в пространствеи Как построить треугольник в пространствеи чисел Как построить треугольник в пространствеи Как построить треугольник в пространстве

а)Как построить треугольник в пространстве;

b)Как построить треугольник в пространстве;

c) Как построить треугольник в пространствеи направление вектора Как построить треугольник в пространствеКак построить треугольник в пространстве

совпадает с направлением вектора Как построить треугольник в пространстве, если Как построить треугольник в пространстве,

противоположно направлению вектора Как построить треугольник в пространстве, если Как построить треугольник в пространстве. Как построить треугольник в пространстве

Коллинеарные и компланарные векторы

Пусть заданы ненулевые векторы Как построить треугольник в пространствеи Как построить треугольник в пространстве. Если векторы

Как построить треугольник в пространствеи Как построить треугольник в пространствесонаправлены или противоположно направлены,

то их называют коллинеарными векторами (рис. 26).

Свойство 1. Если для векторов Как построить треугольник в пространствеи Как построить треугольник в пространствеимеет место равенство Как построить треугольник в пространстве, то они коллинеарны и наоборот.

Если Как построить треугольник в пространстве, то векторы Как построить треугольник в пространствеи Как построить треугольник в пространствесонаправлены Как построить треугольник в пространстве, еслиКак построить треугольник в пространстве, то

противоположно направлены Как построить треугольник в пространстве.

Свойство 2. Если векторы Как построить треугольник в пространстве(a1; a2; a3) и Как построить треугольник в пространстве(b1; b2; b3) коллинеарны,

то их соответствующие координаты пропорциональны:

Как построить треугольник в пространствеи наоборот.

Пример:

Найдите вектор с началом в точке А (1; 1; 1) и концом в точке В, лежащей в плоскости Оху, коллинеарный вектору Как построить треугольник в пространстве( 1; 2; 3).

Решение:

Пусть точка В имеет координаты В (х; у; z). Так как точка В лежит в плоскости Оху, то z=0. Тогда Как построить треугольник в пространстве(х — 1 ;у — 1; — 1).

По условию задачи векторы Как построить треугольник в пространстве(х — 1 ;у — 1; — 1) и Как построить треугольник в пространстве(1, 2, 3) коллинеарны. Следовательно, их координаты пропорциональны.

Тогда получаем следующие пропорции Как построить треугольник в пространстве.

Откуда находим Как построить треугольник в пространстве, Как построить треугольник в пространстве.

Итак,Как построить треугольник в пространстве

Векторы, лежащие в одной плоскости или параллельных плоскостях, называют компланарными векторами (рис. 27). Как построить треугольник в пространстве

Векторы Как построить треугольник в пространстве(1; 0; 0), Как построить треугольник в пространстве(0; 1; 0) и Как построить треугольник в пространстве(0; 0; 1) называют ортами (рис. 28).

Любой вектор Как построить треугольник в пространствеможно единственным образом разложить по ортам, то есть представить в виде Как построить треугольник в пространстве(рис. 29).

Как построить треугольник в пространстве

Точно также, если заданы три нeкомпланарных вектора Как построить треугольник в пространствеи Как построить треугольник в пространстве, то любой вектор Как построить треугольник в пространствеможно единственным образом представить в виде:

Как построить треугольник в пространстве.

Здесь Как построить треугольник в пространственекоторые действительные числа. Тогда говорят, что вектор разложен по заданным векторам.

Скалярное произведение векторов

Углом между ненулевыми векторами Как построить треугольник в пространствеи Как построить треугольник в пространственазывают угол между направленными отрезками векторов Как построить треугольник в пространстве= Как построить треугольник в пространствеи Как построить треугольник в пространстве=Как построить треугольник в пространстве, исходящих из точки О (рис. 30).

Угол между векторами Как построить треугольник в пространствеи Как построить треугольник в пространствеобозначают так Как построить треугольник в пространстве.

Как построить треугольник в пространстве

Скалярным произведением векторов Как построить треугольник в пространствеи Как построить треугольник в пространственазывают произведение длин этих векторов на косинус угла между ними.

Если один из векторов нулевой, то скалярное произведение этих векторов равно нулю.

Скалярное произведение обозначают Как построить треугольник в пространствеили Как построить треугольник в пространстве. По определению Как построить треугольник в пространстве(1)

Из определения следует, что если скалярное произведение векторов Как построить треугольник в пространствеи Как построить треугольник в пространстверавно нулю, то эти векторы перпендикулярны и наоборот.

В физике работа A, выполненная при движении тела на расстоянии Как построить треугольник в пространстве, под воздействием силы Как построить треугольник в пространстве(рис. 31), равна скалярному произведению силы Как построить треугольник в пространствена расстояниеКак построить треугольник в пространстве: Как построить треугольник в пространстве

Свойство. Если Как построить треугольник в пространствеи Как построить треугольник в пространстве(b1; b2; b3), то (Как построить треугольник в пространствеКак построить треугольник в пространстве) = Как построить треугольник в пространстве

Доказательство. Приложим векторы Как построить треугольник в пространствеи Как построить треугольник в пространствек началу

координат О (рис.32). Тогда Как построить треугольник в пространстве= Как построить треугольник в пространствеи Как построить треугольник в пространстве= (b1; b2; b3).

Если векторы неколлинеарны, то получаем треугольник АВО , для которого справедлива теорема косинусов.

Как построить треугольник в пространстве

Тогда Как построить треугольник в пространстве.

Однако, Как построить треугольник в пространстве,Как построить треугольник в пространстве

и Как построить треугольник в пространстве.

Следовательно,Как построить треугольник в пространстве

Как построить треугольник в пространстве

Как построить треугольник в пространстве.

Самостоятельно докажите, что и в случае, когда данные векторы коллинеарны Как построить треугольник в пространстве, также выполняется

это равенство. Как построить треугольник в пространстве

Свойства скалярного произведения векторов

1. Как построить треугольник в пространстве— переместительное свойство.

2. Как построить треугольник в пространстве— распределительное свойство.

3. Как построить треугольник в пространстве— сочетательное свойство.

4.Если векторы а и b являются сонаправленными коллинеарными

векторами, то Как построить треугольник в пространстве, так как соs 0° = 1.

5.Если же векторы противоположно направлены, то Как построить треугольник в пространстве, так как cos l80° = -1.

6. Как построить треугольник в пространстве.

7. Если вектор Как построить треугольник в пространствеперпендикулярен вектору Как построить треугольник в пространстве, то Как построить треугольник в пространстве. Следствия: а) Длина вектора Как построить треугольник в пространстве; (1) b) косинус угла между векторами

Как построить треугольник в пространстве: Как построить треугольник в пространстве; (2)

с) условие перпендикулярности векторов Как построить треугольник в пространствеи

Как построить треугольник в пространстве.

Как построить треугольник в пространстве(3)

Пример:

Как построить треугольник в пространстве— заданные точки. Найдите косинус угла между векторами Как построить треугольник в пространстве.

Решение:

Найдём длины векторов Как построить треугольник в пространстве:

Как построить треугольник в пространстве,

Как построить треугольник в пространстве.

Как построить треугольник в пространстве,

Как построить треугольник в пространстве.

Как построить треугольник в пространстве

Пример:

Найдите угол между векторами Как построить треугольник в пространстве.

Решение:

Как построить треугольник в пространствеИтак, Как построить треугольник в пространстве

Пример:

Найдите Как построить треугольник в пространстве, если Как построить треугольник в пространстве, Как построить треугольник в пространствеи угол между векторамиКак построить треугольник в пространствеи Как построить треугольник в пространстверавен Как построить треугольник в пространстве.

Решение:

Как построить треугольник в пространстве

Как построить треугольник в пространстве

Пример:

Найдите координаты и длины векторов 1)Как построить треугольник в пространстве; 2)Как построить треугольник в пространстве, если Как построить треугольник в пространстве.

Решение:

Подставим в выражения искомых векторов разложения векторов Как построить треугольник в пространствеи Как построить треугольник в пространствепо координатам:

1)Как построить треугольник в пространстве

Как построить треугольник в пространстве. Следовательно,Как построить треугольник в пространстве.

ТогдаКак построить треугольник в пространстве.

2)Как построить треугольник в пространстве

Как построить треугольник в пространствеКак построить треугольник в пространстве.

Следовательно, Как построить треугольник в пространстве.

Тогда Как построить треугольник в пространстве

Пример:

Найдите произведениеКак построить треугольник в пространстве, если угол между векторами Как построить треугольник в пространствеи Как построить треугольник в пространстверавен 30° и Как построить треугольник в пространстве, Как построить треугольник в пространстве.

Решение:

Сначала найдём поизведение векторов Как построить треугольник в пространствеи Как построить треугольник в пространстве:

Как построить треугольник в пространстве.

Затем перемножим заданные выражения как многочлены

и, пользуясь распределительным свойством умножения

вектора на число, получим:

Как построить треугольник в пространстве

Как построить треугольник в пространстве.

Учитывая, что Как построить треугольник в пространстве,

Как построить треугольник в пространственайдём искомое произведение

Как построить треугольник в пространстве

Преобразование и подобие в пространстве

Геометрические преобразования в пространстве

Если каждую точку заданной в пространстве фигуры F изменить одним и тем же способом, то получим фигуру F1. Если при этом преобразовании различные точки первой фигуры переходят в различные точки второй, то говорят о преобразовании геометрической фигуры.

Если рассматривать все пространства как геометрическую фигуру, то также можно говорить о преобразовании геометрической фигуры.

Понятие геометрического преобразование в пространстве вводят также как на плоскости. Следовательно, свойства некоторых рассматриваeмых ниже видов преобразований и их доказательства также подобны соответствующим им на плоскости. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Движение и параллельный перенос

Преобразование фигур, при котором сохраняются расстояния между точками, называют движением. Можно привести следующие свойства движения. При движении прямая переходит в прямую, луч — в луч, отрезок — в равный ему отрезок, угол — в равный ему угол, треугольник — в равный ему треугольник, плоскость — в плоскость, тетраэдр — в равный ему тетраэдр.

В пространстве фигуры, которые можно перевести одну в другую при некотором движении называют равными фигурами.

Простейшим примером движения является параллельный перенос.

Как построить треугольник в пространстве

Пусть в пространстве даны вектор Как построить треугольник в пространствеи произвольная точка Х

(рис. 44). Говорят, что точка Х перешла в точку X1 параллельным

переносом на вектор Как построить треугольник в пространстве, если выполняется условие Как построить треугольник в пространстве. Если каждую точку фигуры F сдвинуть на вектор Как построить треугольник в пространствепри помощи параллельного переноса (рис. 45), то получим фигуру F1. Тогда говорят, что фигура F получена параллельным переносом фигуры F1 . При параллельном переносе каждая точка фигуры F сдвигается в одном и том же направлении на одно и то же расстояние.

Каждая точка подъёмного крана, изображённого на рисунке 46, параллельно перенесена на 40 м относительно начального положения.

Ясно, что параллельный перенос является движением. Поэтому прямая переходит в прямую, луч — в луч, плоскость — в плоскость,

Пусть точка Как построить треугольник в пространствефигуры F перешла в точку Как построить треугольник в пространстве

фигуры F1 при помощи параллельного переноса

на вектор Как построить треугольник в пространстве.

Тогда по определению получим:

Как построить треугольник в пространствеили

Как построить треугольник в пространстве.

Эти равенства называют формулами параллельного переноса.

Пример:

В какую точку перейдёт точка Р (-2; 4; 6) при параллельном переносе на вектор Как построить треугольник в пространстве= (3; 2; 5)?

Решение:

По вышеприведённым формулам параллельного переноса: Как построить треугольник в пространстве.

Ответ: Как построить треугольник в пространстве.

Центральная симметрия в пространстве

Если в пространстве Как построить треугольник в пространстве, то есть точка О — середина отрезка АА1 то точки А и А1 называют симметричными относительно точки О.

Если в пространстве каждая точка фигуры F переходит в точку, симметричную относительно точки О (рис. 47), то такое преобразование называют симметрией относительно точки О. На рисунках 48, 49 изображёны фигуры симметричные относительно точки О. Симметрия относительно точки является движением.

Если при симметрии относительно точки О фигура F переходит в себя, то её называют центрально симметричной фигурой.

Как построить треугольник в пространстве

Например, диагонали параллелепипеда (рис. 50) относительно их точки пересечения О являются центрально симметричными фигурами.

Как построить треугольник в пространстве

Пример:

В какую точку перейдет точка A = (1; 2; 3) при симметрии относительно точки О (2; 4; 6)?

Решение:

Пусть А1 = (х; у; z) — искомая точка. По определению точка

О — середина отрезка АА1. Следовательно,

Как построить треугольник в пространстве

Из этих уравнений получаем:

Как построить треугольник в пространстве.

Ответ: Как построить треугольник в пространстве

Симметрия относительно плоскости

Точки А и А1 называют симметричными относительно плоскости а,

если плоскость перпендикулярна отрезку и делит его пополам (рис. 51). Фигуры F1, и F2 на рисунке 52 симметричны относительно

плоскости а. Очевидно, что наш силуэт и его отражение симметричны относительно плоскости зеркала (рис. 53).

Симметрия относительно плоскости а является движением. Как построить треугольник в пространстве

Поэтому при симметрии относительно плоскости а отрезок переходит в равный ему отрезок, прямая — в прямую, плоскость — в плоскость.

Если при симмeтрии относительно плоскости фигура F переходит в себя, то её называют фигурой симметричной относительно плоскости.

Например, изображённый на рисунке 54 куб, есть фигура, симметричная относительно плоскости а, проходящей через его диагонали АА1 и СС1.

Поворот и симметрия относительно оси

Как построить треугольник в пространстве

Как построить треугольник в пространстве

Пусть в пространстве заданы точки А и А1 и прямая l. Если перпендикуляры АК и А1К, опущенные на прямую l, равны и образуют угол Как построить треугольник в пространстве, то говорят, что точка А перешла в точку А1 в результате поворота на угол Как построить треугольник в пространствеотносительно прямой l (рис. 55).

Если каждую точку фигуры F повернуть на угол Как построить треугольник в пространствеотносительно прямой l, то получим новую фигуру F1 . Тогда говорят, что фигура F перешла в фигуру F1 с помощью поворота на угол Как построить треугольник в пространствеотносительно прямой l. На рисунке 56 мы видим фигуры, полученные таким поворотом. Например, повернув куб, изображённый на рисунке 57, на 180° относительно прямой l, получим новый куб.

Поворот относительно прямой также является движением.

Поворот на 180° относительно прямой l называют симметрией относительно прямой l.

Центр, ось и плоскость симметрии называют элементами симметрии. Точки, симметричные точке А (х; у; z) относительно координатных плоскостей, координатных осей и начала координат, будут иметь следующие координаты:

Как построить треугольник в пространстве

Симметрия в природе и технике

Как построить треугольник в пространстве

В природе на каждом шагу можно встретить симметрию.

Например, множество живых существ, в частности тела человека и животных, листья растений и цветы устроены симметрично (рис. 58). Также в неживой природе есть элементы, например, снежинки, кристаллы соли. Молекулярное строение веществ тоже состоит из симметричных фигур. Это, конечно, неспроста, поскольку симметричные фигуры не только красивы, но и самые устойчивые.

Раз так, то можно считать, что красота и совершенство природы построены на основе симметрии. Взяв за основу природную красоту и совершенство, строители, инженеры и архитекторы создают строения и механизмы, здания и сооружения, технику и транспортные средства симметричными. В этой работе им очень помогает наука геометрия.

Подобие пространственных фигур

Пусть Как построить треугольник в пространствеи преобразование переводят фигуру F1, в фигуру F2. Если

при этом преобразовании для произвольных точек X1 и Х2 фигуры F1 и соответствующих им точек Y1 и Y2 фигуры Как построить треугольник в пространстве, то это преобразование называют преобразованием подобия (рис. 59).

Как построить треугольник в пространстве

Как видим, понятие преобразования подобия в пространстве вводится также как на плоскости. Следовательно, рассматриваемые ниже виды подобия, их свойства и доказательства этих свойств подобны соответствующим на плоскости. Поэтому, мы не будем останавливаться на их доказательствах и рекомендуем провести их самостоятельно. Преобразование подобия в пространстве отображает прямую в прямую, луч в луч, отрезок в отрезок и угол в угол. Точно также это преобразование плоскость отображает в плоскость.

Если в пространстве одна из фигур перешла в другую с помощью преобразования подобия, то эти фигуры называют подобными.

Пусть в пространстве задана фигура F, точка О и число к Как построить треугольник в пространстве. Преобразование, переводящее произвольную точку X фигуры F в точку Х1 удовлетворяющую условию Как построить треугольник в пространстве, называют гомотетией относительно центра О с коэффициентом Как построить треугольник в пространстве(рис. 61). Точку О называют центром гомотетии, а число Как построить треугольник в пространствекоэффициентом гомотетии. Если в результате такого преобразования каждой точки фигуры F получена фигура F1 то говорят, что фигура F гомотетична фигуре F1.

Вы видите, что определение гомотетии в пространстве аналогично соответствующему определению на плоскости. Следовательно, все свойства и их доказательства аналогичны. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Как построить треугольник в пространстве

Гомотетия относительно точки О с коэффициентом Как построить треугольник в пространствеявляется преобразованием подобия. Гомотетия с отличным от нуля коэффициентом Как построить треугольник в пространствепри Как построить треугольник в пространстве= 1 отображает фигуру F в себя, а при Как построить треугольник в пространстве=-1 в фигуру F1 симметричную фигуре F относительно точки О. В остальных случаях гомотетии не сохраняет расстояния между точками, т. е. не является движением. В результате гомотетии расстояние между точками увеличивается в одно и тоже число Как построить треугольник в пространствераз, т. е. меняются измерения фигуры, но сохраняется её форма. При гомотетии а) прямая отображается в параллельную ей прямую (рис. 62.а); b) плоскость — в параллельную ей плоскость (рис. 62.b), если они не проходят через центр гомотетии.

Если же прямая или плоскость проходят через центр гомотетии, то они отображаются в себя.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Иррациональные числа
  • Действительные числа
  • Решение уравнений высших степеней
  • Системы неравенств
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля
  • Уравнение
  • Метод математической индукции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Как построить треугольник в пространстве

Плоскостью называется поверхность, образуемая движением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой .

Проекции плоскости на комплексном чертеже будут различны в зависимости от того, чем она задана. Как известно из геометрии, плоскость может быть задана: а) тремя точками, не лежащими на одной прямой; б) прямой линией и точкой, лежащей вне этой прямой; в) двумя пересекающимися прямыми; г) двумя параллельными прямыми.

Как построить треугольник в пространстве

На комплексном чертеже (рис. 99) проекции плоскости также задаются проекциями этих элементов, например, на рис 99, а — проекциями трех точек А, , и С, не лежащих на одной прямой; на рис. 99, б — проекциями прямой ВС и точки А у не лежащей на этой прямой; на рис. 99, в — проекциями двух пересекающихся прямых; на рис. 99, г проекциями двух параллельных прямых линий АВ и CD.

На рис. 100 плоскость задана прямыми линиями, по которым эта плоскость пересекает плоскости проекций. Такие линии называются следами плоскости.
Линия пересечения данной плоскости Р с горизонтальной плоскостью проекций Н называется горизонтальным следом плоскости Р и обозначается Рн.
Линия пересечения плоскости Р с фронтальной плоскостью проекций V называется фронтальным следом этой плоскости и обозначается Рv.

Линия пересечения плоскости Р с профильной плоскостью проекций W называется профильным следом этой плоскости и обозначается Pw.

Следы плоскости пересекаются на осях проекций. Точки пересечения следов плоскости с осями проекций называются точками схода следов. Эти точки обозначаются Рx, Рy и Рz.
Как построить треугольник в пространстве

Расположение следов плоскости Р на комплексном чертеже по отношению к осям проекций определяет положение самой плоскости по отношению к плоскостям проекций. Например, если плоскость Р имеет фронтальный и профильный следы Pv и Pw, параллельные осям Ох и Оу то такая плоскость параллельна плоскости Н и называется горизонтальной (рис. 101, и). Плоскость Р со следами Рн и Pw , параллельными осям проекций Ох и Oz (рис. 101, называется фронтальной, а плоскость Р со следами Pv и Pн параллельными осям проекций Оу и Oz, — профильной (рис. 101, в).

Как построить треугольник в пространстве

Горизонтальная, фронтальная и профильная плоскости, перпендикулярные к двум плоскостям проекций, называются плоскостями уровня. Если на комплексном чертеже плоскость уровня задана не следами, а какой-нибудь плоской фигурой, например, треугольником или параллелограммом (рис. 101, г, д, е), то на одну из плоскостей проекций эта фигура проецируется без искажения, а на две другие плоскости проекций — в виде отрезков прямых.

ПРОЕЦИРУЮЩИЕ ПЛОСКОСТИ И ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ

Плоскость, перпендикулярная к плоскости Н (рис. 102, а),называется горизонтально-проецирующей плоскостью. Фронтальный след Pv этой плоскости перпендикулярен оси Ох, а горизонтальный след Рн расположен под углом к оси Ох (комплексный чертеж на рис. 102, а)

Если горизонтально-проецирующая плоскость задана не следами, а какой-либо фигурой, например треугольником АВС (рис. 102, 6), то горизонтальная проекция этой плоскости представляет собой прямую линию, а фронтальная и профильная проекции — искаженный вид треугольника АВС.

Как построить треугольник в пространстве

Фронтально-проецирующей плоскостью называется плоскость, перпендикулярная к фронтальной плоскости проекций (рис. 102, в).

Горизонтальный след этой плоскости перпендикулярен оси Ох, а фронтальный след расположен под некоторым углом к оси Ох (комплексный чертеж на рис. 102, в).

При задании фронтально-проецирующей плоскости не следами, а, например, параллелограммом ABCD фронтальная проекция такой плоскости представляет собой прямую линию (рис. 102, г), а на горизонтальную и профильную плоскости проекций параллелограмм проецируется с искажением.

Профильно-проецирующей плоскостью называется плоскость, перпендикулярная к плоскости W (рис. 102, д). Следы Pv и Рн этой плоскости параллельны оси Ох.

При задании профильно-проецирующей плоскости не следами, а, например, треугольником АВС (рис. 102, е) профильная проекция такой плоскости представляет собой прямую линию. Плоскости, перпендикулярные двум плоскостям проекций, как было сказано, называются плоскостями уровня.

Если плоскость Р не перпендикулярна ни одной из плоскостей проекций (рис. 102, ж), то такая плоскость называется плоскостью общего положения. Все три

Как построить треугольник в пространстве
следа Pv, Рн и Pw плоскости Р наклонены к осям проекций.

Если плоскость общего положения задана не следами, а, например, треугольником АВС (рис. 102, з), то этот треугольник проецируется на плоскости H, V и W в искаженном виде.

ПРОЕКЦИИ ТОЧКИ И ПРЯМОЙ, РАСПОЛОЖЕННЫХ НА ПЛОСКОСТИ

Если прямая расположена на плоскости, то она должна проходить через две какие-либо точки, принадлежащие этой плоскости. Такие две точки могут быть взяты на следах плоскости — одна на горизонтальном, а другая на фронтальном. Так как следы прямой и плоскости находятся на плоскостях проекций и то следы прямой, принадлежащей плоскости, должны быть расположены на одноименных следах этой плоскости (рис. 103, а);например, горизонтальный след Н прямой — на горизонтальном следе плоскости, фронтальный след V прямой — на фронтальном следе Рv плоскости (рис. 103, б).

Как построить треугольник в пространстве

Для того чтобы на комплексном чертеже плоскости Р, заданной следами, провести какую-либо прямую общего положения, необходимо наметить на следах плоскости точки v’ или считать их следами искомой прямой (точнее, v’ — фронтальной проекцией горизонтального следа прямой).

Опустив перпендикуляры из v’ и на ось проекций х, находим на ней вторые проекции следов прямой: v — горизонтальную проекцию фронтального следа прямой и h’ — фронтальную проекцию горизонтального следа прямой. Соединив одноименные проекции следов, т. е. v’c h и v c h прямыми, получим две проекции прямой линии, расположенной в плоскости общего положения Р.

Очень часто требуется провести на плоскости горизонталь и фронталь, которые называются главными линиями плоскости или линиями уровня. Главные линии помогают решать многие задачи проекционного черчения.

Горизонталь и фронталь имеют в системе двух плоскостей V и Н только по одному следу (например, горизонталь имеет только фронтальный след). Поэтому, зная один след главной линии, проекцию главной линии проводят по заранее известному направлению. Это направление для горизонтали видно из рис. 104, а, где показана плоскость общего положения и горизонталь, лежащая на ней. Из рисунка видно, что горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости.

Как построить треугольник в пространстве

Таким образом, чтобы на комплексном чертеже плоскости Р провести в этой плоскости какую-либо горизонталь, нужно наметить на следе Рv плоскости точку v’ (рис. 104, б) и считать ее фронтальной проекцией фронтального следа горизонтали. Затем через точку v’ параллельно оси х проводят прямую, которая будет фронтальной проекцией горизонтали.

Опустив перпендикуляр из точки v’ на ось x , получают точку v, которая будет горизонтальной проекцией фронтального следа горизонтали. Прямая, проведенная из точки v параллельно следу PH плоскости, представляет собой горизонтальную проекцию искомой горизонтали. Построение проекции фронтали показано на рис. 104, в и г.

11 с редко требуется провести горизонталь и фронталь на проецирующих плоскостях. Рассмотрим, например, построение горизонтали на фронтально-проецирующей плоскости (рис. 105). На следе плоскости Рv намечаем фронтальную проекцию фронтального следа горизонтали и на оси находим его горизонтальную проекцию v (рис. 105, а). Затем через точку проводим параллельно Рн горизонтальную проекцию горизонтали; фронтальная проекция горизонтали совпадает с точкой v’.

Как построить треугольник в пространстве

Если плоскость задана не следами, а пересекающимися или параллельными прямыми, то построение проекций горизонтали или фронтали, расположенных в этой плоскости, выполняется следующим образом.

Пусть плоскость задана двумя параллельными прямыми AВ и СD (рис. 105, 6). Для построения горизонтали, лежащей в этой плоскости, проводим параллельно оси х фронтальную проекцию горизонтали и отмечаем точки е’и f’ пересечения фронтальной проекции горизонтали с фронтальными проекциями параллельных прямых, которыми задана плоскость. Через точки е’и f’ проводим вертикальные линии связи до пересечения с ab и cd в точках е и f. Точки е и f соединяем прямой линией, которая и будет горизонтальной проекцией горизонтали.

Если требуется найти следы плоскости, заданной пересекающимися или параллельными прямыми, надо найти следы этих прямых и через полученные точки провести искомые следы плоскости.

Рассмотрим комплексный чертеж параллелограмма ABCD (рис. 106, a),который задает некоторую плоскость X. Отрезок DC расположен в плоскости H, следовательно, его горизонтальная проекция dc является горизонтальным следом плоскости (точнее — горизонтальной проекцией горизонтального следа плоскости).

Чтобы найти фронтальный след этой плоскости, необходимо продолжить горизонтальную проекцию dc прямой DC до пересечения с осью х в точке Рх, через которую должен пройти искомый фронтальный след плоскости.

Как построить треугольник в пространстве

Второй точкой v’, через которую пройдет искомый фронтальный след плоскости, является фронтальный след прямой АВ (фронтальная проекция фронтального следа). Фронтальную проекцию фронтального следа прямой АВ находим, продолжая горизонтальную проекцию ab прямой АВ до пересечения с осью х в точке v, которая будет горизонтальной проекцией искомого фронтального следа прямой АВ. Фронтальная проекция фронтального следа этой прямой находится на перпендикуляре, восставленном из точки v к оси х, в точке v’ его пересечения с продолжением фронтальной проекции а’в’ прямой АB. Соединив точки Px с v’, находим фронтальный след Pv плоскости.

Пример решения подобной задачи приведен на рис 106, б.

Часто на комплексных чертежах приходится решать такую задачу: по одной из заданных проекций точки, расположенной на заданной плоскости, определить две другие проекции точки. Ход решения задачи следующий.

Через заданную проекцию точки, например фронтальную проекцию n’ точки N, расположенной на плоскости треугольника АВС (рис. 107), проводим одноименную проекцию вспомогательной прямой любого направления, например m’к’.

Как построить треугольник в пространстве

Горизонталью плоскости называется прямая, принадлежащая этой плоскости и параллельная горизонтальной плоскости проекций Н.

Строим другую проекцию mк вспомогательной прямой. Для этого проводим вертикальные линии связи через точки m’ и к’ до пересечения с линиями ас и вс. Из точки n’ проводим линию связи до пересечения с проекцией mк в искомой точке n.

Профильную проекцию n» находим по общим правилам проецирования.

В качестве вспомогательной прямой для упрощения построения чаще используются горизонталь или фронталь.

Чтобы найти какую-либо точку на плоскости Р, например точку А (рис. 108, а и б) надо найти ее проекции а’и а, которые располагаются на одноименных проекциях горизонтали, проходящей через эту точку. Через точку А проведена горизонталь Av’ .

Как построить треугольник в пространстве

Проводим проекции горизонтали: фронтальную — через v’ параллельно оси х, горизонтальную — через v параллельно следу Рн плоскости Р. На фронтальной проекции горизонтали намечаем фронтальную проекцию а’ искомой точки и, проводя вертикальную линию связи, определяем горизонтальную проекцию а точки А.

Если точка лежит на проецирующей плоскости, то построение ее проекций упрощается. В этом случае одна из проекций точки всегда расположена на следу плоскости (точнее, на его проекции). Например, горизонтальная проекция а точки А, расположенной на горизонтально-проецирующей плоскости Р, находится на горизонтальной проекции горизонтального следа плоскости (рис. 108, в и г)

При заданной фронтальной проекции a’ точки А, лежащей на горизонтально-проецирующей плоскости , найти вторую проекцию этой точки (горизонтальную) можно без вспомогательной прямой, посредством проведения линии связи через а’ до пересечения со следом РН.

Если точка расположена на фронтально-проецирующей плоскости Р (рис. 108, д и е), то ее фронтальная проекция а’ находится на фронтальном следе Хv плоскости Р.

ПРОЕКЦИИ ПЛОСКИХ ФИГУР

Зная построение проекций прямых и точек, расположенных на плоскости, можно построить проекции любой плоской фигуры, например, прямоугольника, треугольника, круга.

Как известно, каждая плоская фигура ограничена отрезками прямых или кривых линий, которые могут быть построены по точкам.

Проекции фигуры, ограниченной прямыми линиями (треугольника и многоугольника), строят по точкам (вершинам). Затем одноименные проекции вершин соединяют прямыми линиями и получают проекции фигур.

Проекции круга или другой криволинейной фигуры строят при помощи нескольких точек, которые берут равномерно по контуру фигуры. Одноименные проекции точек соединяют плавной кривой по лекалу.

Проекции плоской фигуры строят различными способами в зависимости от положения фигуры относительно плоскостей проекций и Наиболее просто построить проекции фигуры, расположенной параллельно плоскостям Н и V; сложнее — при расположении фигуры на проецирующей плоскости или на плоскости общего положения.

Рассмотрим несколько примеров.

Если треугольник АВС расположен на плоскости, параллельной плоскости H (рис. 109, a), то горизонтальная проекция этого треугольника будет его действительным видом, а фронтальная проекция — отрезком прямой, параллельным оси х. Комплексный чертеж треугольника АВС показан на рис. 109, 6. Такой треугольник можно видеть на изображении резьбового резца (рис. 109, в),передняя грань которого треугольная.

Как построить треугольник в пространстве

Трапеция ABCD расположена на фронтально-проецирующей плоскости (рис. 110, а). Фронтальная проекция трапеции представляет собой отрезок прямой линии, а горизонтальная — трапецию (рис. 110, б)

Задняя грань отрезного резца (рис. 110, в) имеет форму трапеции.

Рассматривая плоскость, параллельную горизонтальной, фронтальной или профильной плоскости проекций (плоскость уровня), можно заметить, что любая фигура, лежащая в этой плоскости, имеет одну из проекций, представляющую собой действительный вид этой фигуры; вторая и третья проекции фигуры совпадают со следами этой плоскости.

Рассматривая проецирующую плоскость, заметим, что любая точка, отрезок прямой или кривой линии, а также фигуры, расположенные на проецирующей плоскости, имеют одну проекцию, расположенную на следе этой плоскости. Например, если круг лежит на фронтально-проецирующей плоскости Р (рис. 111), то фронтальная проекция круга совпадает с фронтальным следом Pv плоскости Р. Две другие проекции круга искажены и представляют собой эллипсы. Большие оси эллипсов равны проекциям диаметра круга 37. Малые оси эллипсов равны проекциям диаметра круга 15, перпендикулярного диаметру 37.

Как построить треугольник в пространстве

На рис. 111,6 показано колено трубы с двумя фланцами. Горизонтальная проекция контура нижнего фланца, который расположен в горизонтальной плоскости, будет действительным видом окружности. Горизонтальная проекция контура верхнего фланца изобразится в виде эллипса.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ

Две плоскости могут быть взаимно параллельными или пересекающимися.

Из стереометрии известно, что если две параллельные плоскости пересекают какую-либо третью плоскость, то линии пересечения этих плоскостей параллельны между собой. Исходя из этого положения, можно сделать вывод, что одноименные следы двух параллельных плоскостей Р и Q также параллельны между собой.

Как построить треугольник в пространстве

Если даны две профильно-проецирующие плоскости Р и К (рис. 112, а), то параллельность их фронтальных и горизонтальных следов на комплексном чертеже в системе V и Н недостаточна для того, чтобы определить, параллельны эти плоскости или нет. Для этого необходимо построить их профильные следы в системе V, Н и W (рис. 112, б). Плоскости Р и K будут параллельны только в том случае, если параллельны их профильные следы Pw и Kw.

Одноименные следы пересекающихся плоскостей Р и Q (рис. 112, в) пересекаются в точках V и H, которые принадлежат обеим плоскостям, т. е. линии их пересечения. Так как эти точки расположены на плоскостях проекций, то, следовательно, они являются также следами линии пересечения плоскостей. Чтобы на комплексном чертеже построить проекции линии пересечения двух плоскостей Р и Q, заданных следами Pv, Рн и Qv,Qh, необходимо отметить точки пересечения одноименных следов плоскостей, т. е. точки v’ и h (рис. 112, г); точка v’ — фронтальная проекция фронтального следа искомой линии пересечения плоскостей Р и Q, h — горизонтальная проекция горизонтального следа этой же прямой. Опуская перпендикуляры из точек v’ и h на ось х, находим точки v и h’. Соединив прямыми одноименные проекции следов, т. е. точки v’ и h’, v и h’ получим проекции линии пересечения плоскостей Р и Q.

ПРЯМАЯ, ПРИНАДЛЕЖАЩАЯ ПЛОСКОСТИ

Как построить треугольник в пространстве

Для этого фронтальную проекцию отрезка m’n’ продолжаем до пересечения с отрезками a’b’ и c’d’ (проекциями сторон треугольника АВС), получаем точки (рис. 113, б).

Из точек е’к’ проводим линии связи на горизонтальную проекцию до пересечения с отрезками ab и ca , получаем точки еk. Продолжим горизонтальную проекцию mn отрезка прямой MN до пересечения с проекциями сторон bа и са, если точки пересечения совпадут с ранее полученными точками e и k то прямая MN принадлежит плоскости треугольника.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ

Если прямая АВ пересекается с плоскостью Р, то на комплексном чертеже точка их пересечения определяется следующим образом.

Через прямую А В проводят любую вспомогательную плоскость Q. Для упрощения построений плоскость Q обычно берется проецирующей (рис. 114, a). В данном случае проведена вспомогательная горизонтально-проецирующая плоскость Q. Через горизонтальную проекцию аb прямой АВ проводят горизонтальный след QH плоскости Q и продолжают его до пересечения с осью x в точке Qx . Из точки Qx к оси х восставляют перпендикуляр QxQy , который будет фронтальным следом Qv вспомогательной плоскости Q.

Как построить треугольник в пространстве

Вспомогательная плоскость Q пересекает данную плоскость Р по прямой VH, следы которой лежат на пересечении следов плоскостей Р и Q. Заметив точки пересечения следов Pv и Qv — точку v’ и следов Qн и PH — точку h,опускают из этих точек на ось х перпендикуляры, основания которых — точки v’ и h’ — будут вторыми проекциями следов прямой VH. Соединяя точки v’и h’, v и h, получают фронтальную и горизонтальную проекции линии пересечения плоскостей.

Точка пересечения М заданной прямой AB и найденной прямой VH и будет искомой точкой пересечения прямой АВ с плоскостью Р. Фронтальная проекция m’ этой точки расположена на пересечении проекций a’b’ и v’h’. Горизонтальную проекцию m точки М находят, проводя вертикальную линию связи из точки m’ до пересечения с ab.

Если плоскость задана не следами, а плоской фигурой, например, треугольником (рис. 114, 6), то точку пересечения прямой MN с плоскостью треугольника АВС находят следующим образом.

Через прямую МN проводят вспомогательную фронтально-проецирующую плоскость . Для этого через точки m’ и n’ проводят фронтальный след плоскости Ру продолжают его до оси x и из точки пересечения следа плоскости Ру с осью х опускают перпендикуляр Рн, который будет горизонтальным следом плоскости Р.

Затем находят линию ED пересечения плоскости Р с плоскостью данного треугольника ABC. Фронтальная проекция e’d’ линии ED совпадает с m’n’. Горизонтальную проекцию ed находят, проводя вертикальные линии связи из точек е’и d’ до встречи с проекциями ab и ас сторон треугольника АВС. Точки e и d соединяют прямой. На пересечении горизонтальной проекции ed линии ED с горизонтальной проекцией прямой MN находят горизонтальную проекцию k искомой точки К. Проведя из точки k вертикальную линяю связи, на ходят фронтальную проекцию k’ Точка К — искомая точка пересечения прямой МК с плоскостью треугольника АВС.

Как построить треугольник в пространстве

В частном случае прямая может быть перпендикулярна плоскости Р.Из условия перпендикулярности прямой к плоскости следует, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим на этой плоскости (в частности, этими прямыми могут быть следы плоскости). Тогда проекции прямой АВ будут перпендикулярны одноименным следам этой плоскости (рис 115, а) Фронтальная проекция а’b’ перпендикулярна фронтальному следу Ру, а горизонтальная проекция ab перпендикулярна горизонтальному следу Рн плоскости Р.

Если плоскость задана параллельными или пересекающимися прямыми, то проекции прямой, перпендикулярной этой плоскости, будут перпендикулярны горизонтальной проекции горизонтали и фронтальной проекции фронтали, лежащих на плоскости.

Таким образом, если, например, на плоскость, заданную треугольником АВС необходимо опустить перпендикуляр, то построение выполняется следующим образом (рис. 115, б).

На плоскости проводят горизонталь СЕ и фронталь FA. Затем из заданных проекций d и d’ точки D опускают перпендикуляры соответственно на ce и f’a’. Прямая, проведенная из точки D будет перпендикулярна плоскости треугольника АВС.

ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ

Задачи на построение линии пересечения плоскостей, заданных пересекающимися прямыми, можно решать подобно задаче на пересечение плоскости с прямыми линиями. На рис. 116 показано построение линии пересечения плоскостей, заданных треугольниками АВС и DEF. Прямая MN построена по найденным точкам пересечения сторон DE и EF треугольника DEF с плоскостью треугольника АВС.

Как построить треугольник в пространстве

Например, чтобы найти точку M, через прямую DF проводят фронтально-проецирующую плоскость Р, которая пересекается с плоскостью треугольника АВС по прямой 12. Через полученные точки 1′ и 2′ проводят вертикальные линии связи до пересечения их с горизонтальными проекциями ав и ас сторон треугольника АВС в точках 1 и 2. На пересечении горизонтальных проекций df и 12 получают горизонтальную проекцию m искомой точки М, которая будет точкой пересечения прямой DF с плоскостью АВС. Затем находят фронтальную проекцию m’ точки M. Точку N пересечения прямой EF с плоскостью АВС находят так же, как и точку М.

Соединив попарно точки m’ и n’, m и n, получают проекции линий пересечения MN плоскостей АВС и DEF.

🔍 Видео

Построение треугольника в трёх проекцияхСкачать

Построение треугольника в трёх проекциях

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрияСкачать

Построить проекции линии и точек на ней по заданным координатам. Начертательная геометрия

Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Построение точек по координатамСкачать

Построение точек по координатам

Строим треугольник по трем сторонам (Задача 5).Скачать

Строим треугольник по трем сторонам (Задача 5).

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Параллельное проектирование и его свойства Изображение пространственных фигурСкачать

Параллельное проектирование и его свойства  Изображение пространственных фигур

11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

11 класс, 1 урок, Прямоугольная система координат в пространстве

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Построение треугольника по стороне и двум прилежащим к ней углам. 7 класс. Геометрия.Скачать

Построение треугольника по стороне и двум прилежащим к ней углам. 7 класс. Геометрия.

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

Построение треугольника, равного данномуСкачать

Построение треугольника, равного данному

Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.Скачать

Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости
Поделиться или сохранить к себе: