Как посчитать третью сторону треугольника

Как найти третью сторону треугольника — формулы и расчеты

В геометрии первая фигура, которую школьники начинают изучать, это треугольник. Он является одним из самых распространенных и простых замкнутых объектов. Знание свойств фигуры и необходимых теорем позволяет решать разные задачи о том, как найти третью сторону треугольника на плоскости.

Как посчитать третью сторону треугольника

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Фигура из шести элементов

Под геометрическим элементом полагают какой-либо объект, который имеет определенную меру и является составляющей частью некоторой фигуры. Например, для сферы основными образующими элементами являются радиус и центр.

Как известно, треугольник — это фигура, которая состоит из трех отрезков и такого же количества вершин. При этом все отрезки попарно пересекаются. Из определения фигуры следует, что ее образуют два типа элементов, общее количество которых составляет 6:

  • сторона (3);
  • вершина (3).

Обычно треугольник обозначают большими латинскими буквами, например, ABC, PQM и так далее. Каждая буква — это название вершины (точка пересечения двух отрезков). AB, BC и CA, которые являются длинами сторон, принято обозначать маленькими латинскими буквами по названию противоположных им вершин, то есть c, a и b, соответственно.

Дополнительные отрезки

Несмотря на всю простоту построения фигуры, она обладает большим количеством дополнительных элементов, которые ее могут определять. Среди них самыми важными являются следующие:

Как посчитать третью сторону треугольника

  • Медиана — отрезок, который соединяет вершину и середину противоположной стороны. Таких отрезков в треугольнике три. Все они пересекаются в одной точке, которая является центром масс фигуры. Эта точка делит каждую медиану в отношении 2:1, начиная от вершины. Каждый из трех названных отрезков делит треугольник на две аналогичных фигуры равной площади.
  • Биссектриса — отрезок, который отличается от медианы тем, что он делит пополам соответствующий угол.
  • Высота — перпендикуляр, который из вершины опускается на сторону фигуры. Его удобно использовать при вычислении площади или при определении его углов через тригонометрические выражения. Для некоторых типов треугольников высота может совпадать со стороной (катет в прямоугольной фигуре).
  • Радиусы вписанной и описанной окружностей. Эти замкнутые симметричные кривые можно провести для любого треугольника. Указанные радиусы однозначно определяются через стороны и углы фигуры.
  • Средняя линия — это соединяющий две середины сторон отрезок. Его особенность заключается в том, что он всегда параллелен третьей стороне и равен половине ее длины.

    Виды треугольников

    Разработана достаточно развитая классификация рассматриваемых фигур. Главными ее пунктами являются значения углов треугольника и взаимоотношение между его отрезками. Так, если в фигуре все углы острые, то она называется остроугольной. Если же один из углов больше 90 °, то треугольник полагается тупоугольным. Чаще всего в задачах рассматривают следующие виды:

    Как посчитать третью сторону треугольника

    Основные свойства и понятия

    Треугольник является одной из самых изученных фигур в геометрии. Для него известны многие теоремы, которые с успехом используются при решении задач. Существует два основных свойства фигуры, которые следуют из характеристик евклидового пространства:

    Как посчитать третью сторону треугольника

  • Равенство суммы трех углов 180 °, то есть A + B + C = 180 °. Этот факт доказал еще Евклид в своем знаменитом труде «Элементы». По этой причине треугольник не может содержать больше одного прямого или тупого внутреннего угла.
  • Если известны три отрезка a, b и c такие, что выполняется равенство a + b = c, то из них составить треугольник невозможно. Это фундаментальное свойство говорит о том, что для всякого типа рассматриваемой фигуры сумма длин ее двух любых сторон всегда больше длины третьей.

    Помимо названных свойств, следует знать о треугольнике еще такое понятие, как подобие. Его суть состоит в том, что одна из рассматриваемых фигур является точной копией в миниатюре другой. Для подобных треугольников все углы равны попарно, а все три стороны относятся соответственно попарно друг к другу с одним и тем же коэффициентом подобия.

    Еще одной полезной характеристикой рассматриваемой фигуры является ее качество (CT). Вычисляется оно по следующей формуле:

    CT = (a + b — c)*(b + c — a)*(c + a — b)/(a*b*c).

    Величина CT лежит в пределах от 0 до 1. Она показывает степень близости фигуры к равностороннему, то есть к наиболее симметричному объекту. Если CT 0,5, то фигура характеризуется, как имеющая хорошее качество.

    Величина CT применяется для алгоритмов, которые разделяют какую-либо изучаемую геометрическую поверхность на сетку треугольников. Если в этой сетке генерируется много низкокачественных фигур, то будет велика ошибка аппроксимации рассматриваемой величины.

    Видео:Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

    Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?

    Важные теоремы

    Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:

    Как посчитать третью сторону треугольника

  • Синусов. Как известно, синус — это тригонометрическая функция, которая вводится в прямоугольном треугольнике и определяет отношение противолежащего углу катета к гипотенузе. Теорема синусов для фигуры произвольного типа устанавливает следующее математическое взаимоотношение между отрезками и углами: a/sinA = b/sinB = c/sinC. Это означает, что вычислить длину любой стороны можно, если известен еще какой-нибудь отрезок и два угла.
  • Косинусов. Как и синус, косинус тоже является тригонометрической функцией, которая определяет отношение катета прилежащего к гипотенузе прямоугольной фигуры. Теорему косинусов удобно записать в виде следующего математического выражения: c 2 = a 2 + b 2 — 2*a*b*cosC. С помощью этого равенства можно найти 3 сторону треугольника по 2 сторонам известным и углу между ними.

    К этим двум теоремам следует добавить еще два важных равенства, которые связаны с именами древнегреческих философов.

    Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:

    Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.

    Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:

    a 2 + b 2 = ½*c 2 + 2*Mc 2 .

    Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.

    Видео:Найдите третью сторону треугольникаСкачать

    Найдите третью сторону треугольника

    Примеры решения задач

    Как посчитать третью сторону треугольника

    После того как изучены и рассмотрены основные понятия, свойства и теоремы для различного рода треугольников, можно переходить к решению геометрических задач. Поскольку для этого требуется в большинстве случаев знать значения тригонометрических функций, рекомендуется воспользоваться либо соответствующими таблицами, либо инженерным калькулятором.

    Задачи школьного курса с треугольниками, как правило, не являются сложными. Они решаются благодаря однократному применению какого-либо свойства или теоремы.

    Квадрат и его диагональ

    Пусть дан квадрат, сторона которого составляет 11 см. Необходимо определить половину длины его диагонали.

    Эту геометрическую задачу проще всего решить, если увидеть, что две смежные стороны исходной фигуры и ее диагональ образуют прямоугольный треугольник, который к тому же является равнобедренным. Каждая из равных сторон в нем имеет длину 11 см и является катетом. Диагональ c — это гипотенуза. Применяя пифагорову теорему, можно получить следующее равенство:

    c = (11 2 + 11 2 )^0,5 ≈ 15,556 см.

    Поскольку половина диагонали в два раза меньше гипотенузы, то искомым ответом на задачу будет число c/2 ≈ 7,778 см.

    Две высоты и угол

    Дан треугольник ABC. Известно, что при вершине C угол составляет 37 °. Из вершин A и B проведены высоты к сторонам этого треугольника, их длины составляют h1 = 10 см и h2 = 8 см, соответственно. Необходимо узнать длину стороны фигуры, которая лежит против угла C.

    Из условия задачи можно найти длины сторон AC и BC. Для этого следует увидеть, что каждая из высот с двумя другими сторонами треугольника образует прямоугольную фигуру. Воспользовавшись тригонометрическими равенствами, можно получить следующие результаты:

    • AC = h1/sinC = 10/sin (37 °) ≈ 16,616 см;
    • BC = h2/sinC = 8/sin (37 °) ≈ 13,293 см.

    Как посчитать третью сторону треугольника

    Против угла C лежит сторона AB, которую следует найти. Получается, что известны две стороны треугольника (AC и BC) и угол между ними. Остается применить теорему косинусов, чтобы получить ответ:

    AB = (AC 2 + BC 2 — 2*AC*BC*cosC)^0,5 = (16,616 2 + 13,293 2 — 2* 16,616 * 13,293 *cos (37 °))^0,5 ≈ 10 см.

    Полученный результат свидетельствует о том, что высота h1 совпадает со стороной AB с рассчитанной точностью, то есть исходный треугольник являлся прямоугольным.

    Таким образом, для нахождения стороны треугольника, если известны две другие его стороны или иные отрезки, следует воспользоваться теоремами. Основными из них являются теорема косинусов и синусов, а также Пифагора и Аполлония.

    Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

    Найдите сторону треугольника, если другие его стороны равны 1 и 5

    Длина стороны треугольника

    Вычисление длины стороны треугольника по двум другим и углу между ними согласно теореме косинусов.

    После написания калькулятора Длина стороны прямоугольного треугольника по запросу пользователя вдруг вспомнил, что теорема Пифагора есть частный случай теоремы косинусов:

    Воистину, тема треугольника неисчерпаема, как атом. На сайте уже был один калькулятор, который использовал теорему косинусов — Нахождение углов треугольника по заданным сторонам, а вот и второй, который просто находит длину противолежащей стороны.

    Видео:Теорема Пифагора для чайников)))Скачать

    Теорема Пифагора для чайников)))

    Все формулы для треугольника

    Видео:Нахождение стороны прямоугольного треугольникаСкачать

    Нахождение стороны прямоугольного треугольника

    1. Как найти неизвестную сторону треугольника

    Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

    Как посчитать третью сторону треугольника

    a , b , c — стороны произвольного треугольника

    α , β , γ — противоположные углы

    Формула длины через две стороны и угол (по теореме косинусов), ( a ):

    Как посчитать третью сторону треугольника

    * Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

    Формула длины через сторону и два угла (по теореме синусов), ( a):

    Как посчитать третью сторону треугольника

    Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    2. Как узнать сторону прямоугольного треугольника

    Есть следующие формулы для определения катета или гипотенузы

    Как посчитать третью сторону треугольника

    a , b — катеты

    c — гипотенуза

    α , β — острые углы

    Формулы для катета, ( a ):

    Как посчитать третью сторону треугольника

    Формулы для катета, ( b ):

    Как посчитать третью сторону треугольника

    Формулы для гипотенузы, ( c ):

    Как посчитать третью сторону треугольника

    Как посчитать третью сторону треугольника

    Формулы сторон по теореме Пифагора, ( a , b ):

    Как посчитать третью сторону треугольника

    Как посчитать третью сторону треугольника

    Как посчитать третью сторону треугольника

    Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

    3. Формулы сторон равнобедренного треугольника

    Вычислить длину неизвестной стороны через любые стороны и углы

    Как посчитать третью сторону треугольника

    b — сторона (основание)

    a — равные стороны

    α — углы при основании

    β — угол образованный равными сторонами

    Формулы длины стороны (основания), (b ):

    Как посчитать третью сторону треугольника

    Как посчитать третью сторону треугольника

    Формулы длины равных сторон , (a):

    Как посчитать третью сторону треугольника

    Как посчитать третью сторону треугольника

    Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

    Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

    4. Найти длину высоты треугольника

    Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

    Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

    Как посчитать третью сторону треугольника H — высота треугольника

    a — сторона, основание

    b, c — стороны

    β , γ — углы при основании

    p — полупериметр, p=(a+b+c)/2

    R — радиус описанной окружности

    S — площадь треугольника

    Формула длины высоты через стороны, ( H ):

    Как посчитать третью сторону треугольника

    Формула длины высоты через сторону и угол, ( H ):

    Как посчитать третью сторону треугольника

    Формула длины высоты через сторону и площадь, ( H ):

    Как посчитать третью сторону треугольника

    Формула длины высоты через стороны и радиус, ( H ):

    🎬 Видео

    Лайфхак нахождения катета в прямоугольном треугольникеСкачать

    Лайфхак нахождения катета в прямоугольном треугольнике

    Площадь треугольника. Как найти площадь треугольника?Скачать

    Площадь треугольника. Как найти площадь треугольника?

    Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

    Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

    Периметр треугольника. Как найти периметр треугольника?Скачать

    Периметр треугольника. Как найти периметр треугольника?

    Почти никто не решил ➜ Найдите сторону треугольникаСкачать

    Почти никто не решил ➜ Найдите сторону треугольника

    Найдите угол: задача по геометрииСкачать

    Найдите угол: задача по геометрии

    Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

    Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

    9 класс, 15 урок, Решение треугольниковСкачать

    9 класс, 15 урок, Решение треугольников

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

    КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

    Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

    Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика
  • Поделиться или сохранить к себе: