Как понять что треугольник выпуклый

Выпуклый многоугольник

Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Определение


Выпуклый многоугольник
— это многоугольник, лежащий по одну сторону от каждой
прямой проходящей через два его соседних угла.

Правильный многоугольник — это выпуклый многоугольник,
в котором все углы и стороны равны.

Если в многоугольнике, через каждые два его соседних угла по одну сторону
проходит прямая, то многоугольник выпуклый. Многоугольник, который не
является выпуклым называется не выпуклым многоугольником.

В выпуклых многоугольниках сумма углов вычисляется по формуле: (n-2) * 180,
где n — количество сторон.

Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

Выпуклый многоугольник

Что такое выпуклый многоугольник? В чём отличие выпуклого многоугольника от многоугольника, который не является выпуклым?

Выпуклый многоугольник — это многоугольник, лежащий в одной полуплоскости от каждой прямой, содержащей его сторону.

То есть ни одна из прямых, проходящих через две соседние вершины выпуклого многоугольника, не разрезает этот многоугольник на две части.

1) ABCDEF — выпуклый шестиугольник, так как он лежит в одной полуплоскости относительно каждой из прямых AB, BC, CD, DE и EF.

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

2) MNKFEL — не выпуклый шестиугольник,

Он не лежит в одной полуплоскости относительно прямых KF и FE.

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Не выпуклый многоугольник можно разбить на конечное число выпуклых многоугольников. Поэтому в курсе геометрии средней школы изучают только выпуклые многоугольники.

Важнейшие виды выпуклых многоугольников

  • Треугольники (в частности, прямоугольные, равнобедренные, равносторонние (правильные))
  • Параллелограммы (в частности, прямоугольники, ромбы, квадраты)
  • Трапеции (в частности, прямоугольные и равнобедренные)
  • Правильные многоугольники.

Видео:Выпуклые и невыпуклые многоугольникиСкачать

Выпуклые и невыпуклые многоугольники

Всегда ли треугольник выпуклые

Видео:Чему равна сумма углов выпуклого многоугольникаСкачать

Чему равна сумма углов выпуклого многоугольника

Треугольник — определение и основные свойства и виды треугольника

Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.

Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

Определение треугольника

Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.

Посмотрите на треугольник на рисунке.

Как понять что треугольник выпуклый

У него три вершины — Как понять что треугольник выпуклый, Как понять что треугольник выпуклый, Как понять что треугольник выпуклыйи три стороны Как понять что треугольник выпуклый, Как понять что треугольник выпуклыйи Как понять что треугольник выпуклый. У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут Как понять что треугольник выпуклый([а-бэ-цэ]). А треугольник на вот этом рисунке

Как понять что треугольник выпуклый

будут звать Как понять что треугольник выпуклый([эм-эн-ка]).

По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.

В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.

Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

Высота треугольника

В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.

Например, в треугольнике Как понять что треугольник выпуклый, высотой будет отрезок Как понять что треугольник выпуклый.

Как понять что треугольник выпуклый

А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.

Как понять что треугольник выпуклый

В этом треугольнике три высоты Как понять что треугольник выпуклый, Как понять что треугольник выпуклый, Как понять что треугольник выпуклый.

Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.

Видео:№365. Сколько сторон имеет выпуклый многоугольник, каждый угол которого равенСкачать

№365. Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен

Виды треугольника

Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.

Виды треугольников по углам

В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный Как понять что треугольник выпуклый, треугольник бывает остроугольным, тупоугольным или прямоугольным.

Посмотрите на рисунки — перед вами три основных вида треугольника:

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Виды треугольников по сторонам

Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.

На рисунке показаны равносторонний и равнобедренный треугольники.

Как понять что треугольник выпуклый

Как понять что треугольник выпуклый

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Свойства сторон треугольника

Треугольник имеет важные свойства и характеристики.

Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.

Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.

Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть: Как понять что треугольник выпуклый

Например, пусть наш треугольник имеет длины двух сторон Как понять что треугольник выпуклый, а Как понять что треугольник выпуклыйсм. В каком диапазоне будет размер третьей стороны треугольника?

Решение: согласно свойству сторон треугольника, получим:

Как понять что треугольник выпуклый

Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.

Правило существования треугольника

Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.

Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.

Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?

Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.

Видео:Выпуклый многоугольник | Геометрия 7-9 класс #40 | ИнфоурокСкачать

Выпуклый многоугольник | Геометрия 7-9 класс #40 | Инфоурок

Свойство углов в треугольнике

Сумма всех углов в треугольнике равна Как понять что треугольник выпуклый.

Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна Как понять что треугольник выпуклый.

Например, пусть известно, что в треугольнике Как понять что треугольник выпуклый, Как понять что треугольник выпуклый, Как понять что треугольник выпуклый, нужно найти Как понять что треугольник выпуклый.

Как понять что треугольник выпуклый

Так как сумма углов в треугольнике равна Как понять что треугольник выпуклый, то находим:

Как понять что треугольник выпуклый.

Ответ: Как понять что треугольник выпуклый.

Видео:Виды угловСкачать

Виды углов

Элементы композиции

Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.

Как понять что треугольник выпуклый

А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:

Как понять что треугольник выпуклый

Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.

Видео:Найдите угол: задача по геометрииСкачать

Найдите угол: задача по геометрии

Выпуклый многоугольник: определение, элементы, свойства, примеры

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Содержание:

А выпуклый многоугольник Это геометрическая фигура, содержащаяся в плоскости, которая характеризуется тем, что все ее диагонали находятся внутри, а ее углы составляют менее 180 °. Среди его свойств можно выделить следующие:

1) Он состоит из n последовательных сегментов, в которых последний из сегментов соединяется с первым. 2) Ни один из сегментов не пересекается таким образом, чтобы ограничить плоскость во внутренней и внешней областях. 3) Каждый угол во внутренней области строго меньше плоского угла.

Простой способ определить, является ли многоугольник выпуклым или нет, — это рассмотреть линию, проходящую через одну из его сторон, которая определяет две полуплоскости. Если на каждой линии, проходящей через одну сторону, другие стороны многоугольника находятся в одной полуплоскости, то это выпуклый многоугольник.

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Элементы многоугольника

Каждый многоугольник состоит из следующих элементов:

Стороны — это каждый из последовательных сегментов, составляющих многоугольник. В многоугольнике ни один из составляющих его сегментов не может иметь открытого конца, в этом случае будет многоугольная линия, но не многоугольник.

Вершины — это точки соединения двух последовательных отрезков. В многоугольнике количество вершин всегда равно количеству сторон.

Если две стороны или сегменты многоугольника пересекаются, значит, у вас есть перекрещенный многоугольник. Точка пересечения не считается вершиной. Поперечный многоугольник — это невыпуклый многоугольник. Звездообразные многоугольники являются перекрестными многоугольниками и поэтому не являются выпуклыми.

Когда у многоугольника все стороны одинаковой длины, мы получаем правильный многоугольник. Все правильные многоугольники выпуклые.

Видео:Как узнать сумму углов любой выпуклой фигуры? Просто!Скачать

Как узнать сумму углов любой выпуклой фигуры? Просто!

Выпуклые и невыпуклые многоугольники

На рисунке 1 показано несколько многоугольников, некоторые из них выпуклые, а некоторые — нет. Разберем их:

Номер 1 — это трехсторонний многоугольник (треугольник), а все внутренние углы меньше 180 °, поэтому это выпуклый многоугольник. Все треугольники — выпуклые многоугольники.

Число 2 — это четырехсторонний многоугольник (четырехугольник), в котором ни одна из сторон не пересекается, а каждый внутренний угол меньше 180 °. Тогда это будет выпуклый многоугольник с четырьмя сторонами (выпуклый четырехугольник).

С другой стороны, число 3 представляет собой многоугольник с четырьмя сторонами, но один из его внутренних углов больше 180 °, поэтому он не удовлетворяет условию выпуклости. То есть это невыпуклый четырехсторонний многоугольник, называемый вогнутым четырехугольником.

Число 4 представляет собой многоугольник с четырьмя отрезками (сторонами), два из которых пересекаются. Четыре внутренних угла меньше 180 °, но поскольку две стороны пересекаются, получается невыпуклый перекрещенный многоугольник (перекрещенный четырехугольник).

Другой случай — число 5. Это многоугольник с пятью сторонами, но поскольку один из его внутренних углов больше 180 °, мы получаем вогнутый многоугольник.

Наконец, число 6, у которого также есть пять сторон, имеет все внутренние углы меньше 180º, поэтому это выпуклый многоугольник с пятью сторонами (выпуклый пятиугольник).

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Свойства выпуклого многоугольника

1. Непересекающийся многоугольник или простой многоугольник делит содержащую его плоскость на две области. Внутренняя область и внешняя область, многоугольник является границей между двумя областями.

Но если многоугольник дополнительно выпуклый, тогда у нас есть внутренняя область, которая является односвязной, что означает, что, взяв любые две точки из внутренней области, он всегда может быть соединен сегментом, который полностью принадлежит внутренней области.

2- Каждый внутренний угол выпуклого многоугольника меньше плоского угла (180º).

3- Все внутренние точки выпуклого многоугольника всегда принадлежат одной из полуплоскостей, определяемых линией, проходящей через две последовательные вершины.

4- В выпуклом многоугольнике все диагонали полностью содержатся во внутренней многоугольной области.

5- Внутренние точки выпуклого многоугольника полностью принадлежат выпуклому угловому сектору, определяемому каждым внутренним углом.

6. Каждый многоугольник, все вершины которого находятся на окружности, является выпуклым многоугольником, который называется циклическим многоугольником.

7- Каждый циклический многоугольник является выпуклым, но не каждый выпуклый многоугольник является циклическим.

8- Каждый непересекающийся многоугольник (простой многоугольник), все стороны которого равны, является выпуклым и известен как правильный многоугольник.

Видео:Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

Диагонали и углы в выпуклых многоугольниках

9- Общее количество N диагоналей выпуклого многоугольника с n сторонами определяется по следующей формуле:

Доказательство. В выпуклом многоугольнике с n сторонами каждой вершины нарисовано n — 3 диагоналей, так как сама вершина и две соседние вершины исключены. Поскольку имеется n вершин, всего нарисовано n (n — 2) диагоналей, но каждая диагональ была нарисована дважды, поэтому количество диагоналей (без повторения) равно n (n-2) / 2.

10- Сумма S внутренних углов выпуклого многоугольника с n сторонами определяется следующим соотношением:

Доказательство. Из вершины выводятся n-3 диагонали, определяющие n-2 треугольника. Сумма внутренних углов каждого треугольника составляет 180º. Общая сумма углов n-2 треугольников равна (n-2) * 180º, что совпадает с суммой внутренних углов многоугольника.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Примеры

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Пример 1

Циклический шестиугольник — это многоугольник с шестью сторонами и шестью вершинами, но все вершины находятся на одной окружности. Каждый циклический многоугольник выпуклый.

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Пример 2

Определите значение внутренних углов обычного энегона.

Решение: enegon — это 9-сторонний многоугольник, но если он также правильный, все его стороны и углы равны.

Сумма всех внутренних углов 9-стороннего многоугольника равна:

S = (9 — 2) 180º = 7 * 180º = 1260º

Но существует 9 внутренних углов одинаковой меры α, поэтому должно выполняться равенство:

Отсюда следует, что мера α каждого внутреннего угла правильного ребра равна:

α = 1260º/9 = 140º

Как расслабиться в офисе? 12 практических советов

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Выпуклый многоугольник

Определение


Выпуклый многоугольник
— это многоугольник, лежащий по одну сторону от каждой
прямой проходящей через два его соседних угла.

Правильный многоугольник — это выпуклый многоугольник,
в котором все углы и стороны равны.

Если в многоугольнике, через каждые два его соседних угла по одну сторону
проходит прямая, то многоугольник выпуклый. Многоугольник, который не
является выпуклым называется не выпуклым многоугольником.

В выпуклых многоугольниках сумма углов вычисляется по формуле: (n-2) * 180,
где n — количество сторон.

Поделиться или сохранить к себе: