Как понять что треугольник острый

Остроугольный, прямоугольный и тупоугольный треугольники.

Виды треугольников

Остроугольный треугольник — это треугольник,
в котором все углы острые.

Прямоугольный треугольник — это треугольник,
в котором один из углов прямой.

Тупоугольный треугольник — это треугольник,
в котором один из углов тупой.

Как определить вид треугольника

Для того, чтобы понять какой треугольник — остроугольный, прямоугольный или тупоугольный
нужно знать какая градусная мера у углов в треугольнике.

Если один из углов в треугольнике прямой, значит треугольник прямоугольный. Все углы острые в треугольнике — значит треугольник остроугольный. Если в треугольнике один из углов тупой, значит треугольник тупоугольный.

В произвольном треугольнике все углы острые, или два угла острые, а третий прямой или тупой. Если в треугольнике вам известно, что один углов тупой или прямой, значит сумма двух других углов не больше 90 градусов.

В прямоугольном треугольнике стороны напротив острых углов называются катетами, а сторона напротив прямого угла называется гипотенузой.

Градусные меры острого, тупого, прямого углов в треугольниках

Чтобы понять как называется угол и как называется треугольник с этими углами — надо знать его градусную меру:

  1. Острый угол в любом из треугольников не больше 90 градусов.
  2. Прямой угол в любом из треугольников равен 90 градусам.
  3. Тупой угол в любом из треугольников больше 90 градусов, но меньше 180 градусов.

Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

Остроугольный треугольник — виды, свойства и признаки

Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.

Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.

Видео:Треугольники: остро-, тупо- и прямоугольныеСкачать

Треугольники: остро-, тупо- и прямоугольные

Виды, признаки и свойства остроугольных треугольников

Трехсторонние фигуры разделяются на множество подвидов и категорий.

Общая классификация по наибольшему углу делит их на 3 группы:

Как понять что треугольник острый

Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.

3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;

сумма длин любых двух сторон больше оставшейся третьей.

Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:

1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.

Как понять что треугольник острый

2. Высоты пересекаются в одной точке, образуя ортоцентр.

Как понять что треугольник острый

3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).

Как понять что треугольник острый

Уникальные особенности зависят от разновидностей фигуры.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Равносторонний треугольник

Как понять что треугольник острый

«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.

Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.

Как понять что треугольник острый

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Разносторонний треугольник

Как понять что треугольник острый

Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.

Уникальных отличий не имеет, только общие:

все параметры имеют разные значения;

совпадений между вспомогательными линиями нет.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Равнобедренный остроугольный треугольник

Как понять что треугольник острый

Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.

проведенная к основанию линия – и биссектриса, и высота, и медиана;

вспомогательные линии из крайних точек при основании совпадают.

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Равнобедренный тупоугольный треугольник

Как понять что треугольник острый

Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.

Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.

Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.

В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.

Видео:Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)Скачать

Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)

Остроугольный, прямоугольный и тупоугольный треугольники

В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой. Данный вывод можно сделать на основе теоремы о сумме углов треугольника, так как если в треугольнике один из углов тупой или прямой, то сумма других двух не будет превосходить 90 0 , т.е. каждый из них будет являться острым.

  1. Остроугольный треугольник — это треугольник, у которого все три угла острые.

Как понять что треугольник острый

  1. Тупоугольный треугольник — это треугольник, у которого один из углов тупой.

Как понять что треугольник острый

  1. Прямоугольный треугольник — это треугольник, у которого один из углов прямой. У данного треугольника сторона, лежащая напротив прямого угла, называется гипотенузой, а две другие стороны — катетами.

Как понять что треугольник острый

Поделись с друзьями в социальных сетях:

🔥 Видео

Виды треугольниковСкачать

Виды треугольников

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира

32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

32. Остроугольный, прямоугольный и тупоугольный треугольники

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

7 класс, 36 урок, Признаки равенства прямоугольных треугольниковСкачать

7 класс, 36 урок, Признаки равенства прямоугольных треугольников

Угол. Виды углов: прямой, острый, тупойСкачать

Угол. Виды углов: прямой, острый, тупой

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?
Поделиться или сохранить к себе: