- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
- Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.
- 📽️ Видео
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около 
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
 
Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник, 
 если известна площадь и все стороны:
 Радиус вписанной окружности в треугольник, 
если известны площадь и периметр:
 Радиус вписанной окружности в треугольник, 
если известны полупериметр и все стороны: 
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника, 
 если известна одна из сторон и синус противолежащего стороне угла:
 Радиус описанной окружности около треугольника, 
если известны все стороны и площадь: 
 Радиус описанной окружности около треугольника, 
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность, 
 если известен полупериметр и радиус вписанной окружности:
 Площадь треугольника вписанного в окружность, 
если известен полупериметр:
 Площадь треугольника вписанного в окружность, 
если известен высота и основание:
 Площадь треугольника вписанного в окружность, 
если известна сторона и два прилежащих к ней угла:
 Площадь треугольника вписанного в окружность, 
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность, 
 если известны все стороны:
 Периметр треугольника вписанного в окружность, 
если известна площадь и радиус вписанной окружности: 
 Периметр треугольника вписанного в окружность, 
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность, 
 если известны две стороны и косинус угла между ними:
 Сторона треугольника вписанного в 
окружность, если известна сторона и два угла: 
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного 
 в окружность, если известно основание:
 Средняя линия треугольника вписанного в окружность, 
если известныдве стороны, ни одна из них не является 
основанием, и косинус угламежду ними: 
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность, 
 если известна площадь и основание:
 Высота треугольника вписанного в окружность, 
если известен сторона и синус угла прилежащего 
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
 Высота треугольника вписанного в окружность, 
если известен радиус описанной окружности и 
две стороны, ни одна из которых не является основанием:
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Свойства
- Центр вписанной в треугольник окружности 
 находится на пересечении биссектрис.
- В треугольник, вписанный в окружность, 
 можно вписать окружность, причем только одну.
- Для треугольника, вписанного в окружность, 
 справедлива Теорема Синусов, Теорема Косинусов
 и Теорема Пифагора.
- Центр описанной около треугольника окружности 
 находится на пересечении серединных перпендикуляров.
- Все вершины треугольника, вписанного 
 в окружность, лежат на окружности.
- Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и 
 треугольника, в который вписана окружность, можно найти по
 формуле Герона.
Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
 
окружность и треугольник, 
которые изображены на рисунке 2.
окружность описана 
около треугольника.
- Проведем серединные 
 перпендикуляры — HO, FO, EO.
- O — точка пересечения серединных 
 перпендикуляров равноудалена от
 всех вершин треугольника.
- Центр окружности — точка пересечения 
 серединных перпендикуляров — около
 треугольника описана окружность — O,
 от центра окружности к вершинам можно
 провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника, 
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:Найдите сторону треугольника на рисункеСкачать

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.
Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?
В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.
Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.
Вот еще две формулы для площади. 
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
— радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части :
где — стороны треугольника, — радиус описанной окружности.
Для любого треугольника верна теорема синусов:
Ты нашел то, что искал? Поделись с друзьями!
. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .
Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .
Запишем площадь треугольника АВС двумя способами:
Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .
В ответ запишем .
. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.
По теореме синусов,
Получаем, что . Угол — тупой. Значит, он равен .
. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.
Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.
, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .
Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .
Видео:ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.Скачать

Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.
По двум сторонам a и b треугольника ABC и радиусу R описанного круга вычислить третью сторону x треугольника.
Применяя к этому четырехугольнику теорему Птоломея будем иметь:
откуда легко найдем x .
Задача будет иметь другое решение, если предположим, что стороны a и b лежат по одну сторону от центра. Применяя к этому случаю теорему Птоломея, мы получим следующее уравнение:
Теорема.
Произведение двух сторон треугольника равно:
1. произведению диаметра описанного круга на высоту, проведенную к третьей стороне.
2. квадрату биссектрисы угла, заключенного между этими сторонами, сложенному с произведением отрезков третьей стороны.
1.Обозначим стороны треугольника ABC через a, b и с, высоту, опущенную на сторону a через ha , а радиус описанного круга через R.Проведем диаметр AD и соединим D с B.
Треугольники ABD и AEC подобны, потому что углы B и E прямые и D= С , как углы вписанные, опирающиеся на одну и ту же дугу.
Из этой формулы легко определить величину радиуса R описанного круга.
По первой теореме мы имеем: bс = 2Rha , где b и с есть две стороны треугольника, ha — высота, опущенная на третью сторону треугольника, и R — радиус описанного круга.
Из этого равенства выводим:
Исключим из этой формулы высоту ha: для этого умножим числитель и знаменатель дроби на a. Тогда, заменив произведение ha a удвоенной площадью треугольника (которую обозначим S), получим:
,
Чтобы найти радиус r внутреннего вписанного круга рассмотрим треугольник АВС со вписанной в него окружностью. Отметим центр вписанной окружности и примем во внимание, что прямые OA, OB и OС разделяют данный треугольник на три других треугольника, у которых основаниями служат стороны данного треугольника, а высотой — радиус r.
Поэтому: S=1/2ar + 1/2br + 1/2cr = r ½ (a+b+c) = rp.
📽️ Видео
Найдите третью сторону треугольникаСкачать

Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Вписанная и описанная окружность - от bezbotvyСкачать

найти радиус окружности, описанной вокруг треугольникаСкачать

9 класс, 15 урок, Решение треугольниковСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Радиус описанной окружностиСкачать

Найдите стороны треугольникаСкачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача найти сторону равностороннего треугольника по медианеСкачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать








