Как найти расстояние треугольника

Как найти расстояние между двумя точками?

Как найти расстояние треугольника

Расстоянием между точками также называют прямую,
у которой одна из точек это начало, а соответственно
другая конец. Найти расстояние между этими
двумя точками, значит найти длину прямой,
связывающей точки.

Есть много разных способов найти расстояние между
двумя точками, но самый универсальный, на мой взгляд,
это найти расстояние взяв за основу Теорему Пифагора.
Исходя из этой теоремы, можно сказать, что в нашем
случае расстоянием(прямой), является гипотенуза,
а чем тогда являются точки, сейчас разберемся.

Формулировка великой Теоремы Пифагора звучит так:
в прямоугольном треугольнике квадрат гипотенузы равен
сумме квадратов катетов. Или же кратко, формулой:
( c^2 = a^2 + b^2 ) где c — это гипотенуза, a и b — катеты.

Формулировка этой теоремы применяется почти всегда и везде,
где нужно найти расстояние от чего-то до чего-то. Сейчас, мы
используя эту теорему найдем расстояние между точками.

Итак, для примера возьмем точки с координатами
первой точки — x1 = 0; y1 = 4, второй точки — x2 =3; y2 = 0.
Как же нам теперь выразить точки через катеты a и b ?
Читайте дальше, все гениальное просто.

Как найти расстояние треугольника Как найти расстояние треугольника

На рисунке 1 мы изобразили для наглядности
прямоугольный треугольник, с координатами
которые мы взяли для примера. На рисунке 2
тот же самый прямоугольный треугольник,
только без координат! Эти два прямоугольных
треугольника идентичные, поэтому вернемся
к Теореме Пифагора.

Заменяем длины катетов a и b, из Теоремы Пифагора,
на разность координат точек. ​Взгляните на формулу,
которая получилась:

Подставляем наши координаты:

В итоге получилось, что расстояние в нашем примере
равно 5(корень из 25). Как видите все просто, и вы можете
смело применять эту формулу, решая не только задачи,
но и на практике, находя расстояние зная только две точки.

Видео:Определить расстояние от точки С до прямой АВ. Метод прямоугольного треугольника.Скачать

Определить расстояние от точки С до прямой АВ. Метод прямоугольного треугольника.

Все формулы для треугольника

Видео:Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти расстояние треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Как найти расстояние треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Как найти расстояние треугольника

Видео:Как найти расстояние от вершины треугольника до ортоцентра? Профиматика и ЕГЭматика знают ответ!Скачать

Как найти расстояние от вершины треугольника до ортоцентра? Профиматика и ЕГЭматика знают ответ!

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Как найти расстояние треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Как найти расстояние треугольника

Формулы для катета, ( b ):

Как найти расстояние треугольника

Формулы для гипотенузы, ( c ):

Как найти расстояние треугольника

Как найти расстояние треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

Видео:Как начертить Эпюр 1 КНИТУ(КХТИ) 1 курс.Найти расстояние от точки D до плоскости треугольника ABCСкачать

Как начертить Эпюр 1 КНИТУ(КХТИ) 1 курс.Найти расстояние от точки D до плоскости треугольника ABC

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Как найти расстояние треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Как найти расстояние треугольника

Как найти расстояние треугольника

Формулы длины равных сторон , (a):

Как найти расстояние треугольника

Как найти расстояние треугольника

Видео:✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать

✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис Трушин

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Как найти расстояние треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Как найти расстояние треугольника

Формула длины высоты через сторону и угол, ( H ):

Как найти расстояние треугольника

Формула длины высоты через сторону и площадь, ( H ):

Как найти расстояние треугольника

Формула длины высоты через стороны и радиус, ( H ):

Видео:Найти расстояние между центрами описанной и вписанной окружностей в прямоугольном треугольникеСкачать

Найти расстояние между центрами описанной и вписанной окружностей в прямоугольном треугольнике

Расстояние от точки до прямой

Что называется расстоянием от точки до прямой? Как найти расстояние от точки до прямой?

Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из данной точки на прямую.

Как найти расстояние треугольника

Таким образом, чтобы найти расстояние от точки до прямой, надо из точки к прямой провести перпендикуляр и найти его длину.

Например, на рисунке 1 расстояние от точки A до прямой a равно длине перпендикуляра AB, опущенного из точки A на прямую a.

Задачи на нахождение расстояния от точки до прямой сводятся к рассмотрению прямоугольного треугольника.

№ 1. Из точки к прямой проведены две наклонные, длины которых относятся как 2:3, а длины их проекций соответственно равны 2 см и 7 см. Найти расстояние от точки до прямой.

Как найти расстояние треугольникаДано: A∉a,

Как найти расстояние треугольника

BC и BD — их проекции, BC=2 см, BD=7 см

1) Пусть k — коэффициент пропорциональности. Тогда AC=2k см, AD=3k см.

2) Рассмотрим треугольник ABC — прямоугольный (так как AB — перпендикуляр к прямой a по условию). По теореме Пифагора

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

3) Аналогично, из треугольника ABD

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

4) Приравниваем правые части полученных равенств и находим k:

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

5) Зная k, найдем AB:

Как найти расстояние треугольника

Как найти расстояние треугольника

№ 2. Из точки к прямой проведены две наклонные, длины которых равны 13 см и 15 см. Найти расстояние от точки до прямой, если разность проекций наклонных равна 4 см.

Как найти расстояние треугольникаДано: A∉a,

Как найти расстояние треугольника

AC и AD — наклонные, AC=13 см, AD=15 см,

BC и BD — их проекции, BD-BC=4 см

1) Пусть BC=x см, тогда BD=x+4 см.

2) Рассмотрим треугольник ABC — прямоугольный (так как AB — перпендикуляр к прямой a по условию). По теореме Пифагора

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

3) Аналогично, из треугольника ABD

Как найти расстояние треугольника

Как найти расстояние треугольника

4) Приравниваем правые части полученных равенств и находим x:

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

Как найти расстояние треугольника

5) Зная x, найдем AB:

Как найти расстояние треугольника

Как найти расстояние треугольника

№ 3. Найти расстояние от точки A до прямой a, если известно, что наклонная AF, длина которой равна c, образует с прямой a угол α.

Как найти расстояние треугольникаДано: A∉a,

Как найти расстояние треугольника

Треугольник ABF — прямоугольный (так как AB — перпендикуляр к прямой a по условию). AB — катет, противолежащий углу ACB, AF — гипотенуза.

📸 Видео

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 смСкачать

№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см

Определение расстояния от точки до плоскости треугольникаНатуральная величина расстоянияСкачать

Определение расстояния от точки до плоскости треугольникаНатуральная величина расстояния

Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Расстояние от точки до плоскостиСкачать

Расстояние от точки до плоскости

Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Определить расстояние от точки до плоскости (от точки D до плоскости треугольника ABC)Скачать

Определить расстояние от точки до плоскости (от точки D до плоскости треугольника ABC)

Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

расстояние от точки до плоскостиСкачать

расстояние от точки до плоскости
Поделиться или сохранить к себе: