В данной публикации мы рассмотрим, каким образом можно посчитать периметр трапеции и разберем примеры решения задач.
- Формула вычисления периметра
- Примеры задач
- Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной
- Принятые в формулах обозначения
- Найти периметр трапеции
- Основные свойства равнобедренной трапеции
- Формулы длин сторон равнобедренной трапеции:
- Формулы длины средней линии равнобедренной трапеции:
- Формулы определения длины высоты равнобедренной трапеции:
- В исходных данных: все стороны
- Периметр произвольной трапеции
- Вписанная окружность
- Решение задач о прямоугольной трапеции
- Задача Даны три стороны, одна из которых перпендикулярная боковая.
- Задача Даны оба основания и угол при основании
- Свойства и признаки равнобедренной трапеции
- Формула определения радиуса вписанной в трапецию окружности
- Формулы определения длин отрезков проходящих через трапецию:
- Определение периметра прямоугольной трапеции
- Известны: диагонали и углы между ними
- Периметр трапеции
- Найти периметр трапеции в задачах ЕГЭ
- Задача 1
- Задача 2
- Задача 3
- Задача 4
- Задача 5
- 📸 Видео
Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать
Формула вычисления периметра
Периметр (P) трапеции равняется сумме длин всех ее сторон.
P = a + b + c + d
- b и d – основания трапеции;
- a и с – ее боковые стороны.
Периметр равнобедренной трапеции
В равнобедренной трапеции боковые стороны равны (a=c), из-за чего ее, также, называют равнобокой. Периметр считается так:
P = 2a + b + d или P = 2с + b + d
Периметр прямоугольной трапеции
Для расчета периметра используется такая же формула, что и для разносторонней трапеции.
P = a + b + c + d
Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать
Примеры задач
Задание 1
Найдите периметр трапеции, если ее основания равны 7 и 10 см, а боковые стороны – 4 и 5 см.
Решение:
Используем стандартную формулу, подставив в нее известные нам длины сторон: P = 7 см + 10 см + 4 см + 5 см = 26 см.
Задание 2
Периметр равнобедренной трапеции равняется 22 см. Найдите длину боковой стороны, если основания фигуры равны 3 см и 9 см.
Решение:
Как мы знаем, периметр равнобедренной трапеции вычисляется по формуле: P = 2a + b + d, где а – боковая сторона.
Ее длина, умноженная на два равна: 2a = P – b – d = 22 см – 3 см – 9 см = 10 см.
Следовательно, длина боковой стороны составляет: a = 10 см / 2 = 5 см.
Видео:Радиус описанной окружности трапецииСкачать
Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной
Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать
Принятые в формулах обозначения
Во всех приведенных ниже математических записях верны такие прочтения букв.
произвольная трапеция | равнобедренная трапеция | название |
а | а | нижнее основание |
в | в | верхнее основание |
с, d | с | боковые стороны |
н | н | высота |
m | m | средняя линия |
d1, d2 | d1 | диагонали |
s | s | площадь |
α, β | α | углы при нижнем основании |
γ, δ | γ, δ | углы на пересечении диагоналей |
Видео:8 класс, 6 урок, ТрапецияСкачать
Найти периметр трапеции
Введите данные:
a = |
b = |
c = |
d = |
Вводить можно числа или дроби (-2.4, 5/7, …).
Видео:Задача про трапецию, описанную около окружностиСкачать
Основные свойства равнобедренной трапеции
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:
AP = | BC + AD |
2 |
PD = | AD – BC |
2 |
Формулы длин сторон равнобедренной трапеции:
a = b + 2 h ctg α = b + 2 c cos α
b = a – 2 h ctg α = a – 2 c cos α
c = | h | = | a – b |
sin α | 2 cos α |
2. Формула длины сторон трапеции через диагонали и другие стороны:
a = | d 1 2 – c 2 | b = | d 1 2 – c 2 | c = √ d 1 2 – ab |
b | a |
3. Формулы длины основ через площадь, высоту и другую основу:
a = | 2S | – b b = | 2S | – a |
h | h |
4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:
с = | S |
m sin α |
5. Формулы длины боковой стороны через площадь, основания и угол при основе:
с = | 2S |
( a + b ) sin α |
Формулы длины средней линии равнобедренной трапеции:
m = a – h ctg α = b + h ctg α = a – √ c 2 – h 2 = b + √ c 2 – h 2
2. Формула средней линии трапеции через площадь и сторону:
m = | S |
c sin α |
Формулы определения длины высоты равнобедренной трапеции:
1. Формула высоты через стороны:
h = | 1 | √ 4 c 2 – ( a – b ) 2 |
2 |
2. Формула высоты через стороны и угол прилегающий к основе:
h = | a – b | tg β | = c sin β |
2 |
Видео:Малоизвестные свойства равнобедренной трапеции. Разбор задачи 17 ЕГЭ профиль.Скачать
В исходных данных: все стороны
Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:
н = √(с 2 – (((а – в) 2 + с 2 – d 2 )/(2(а – в))) 2 ). Номер 1.
Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.
Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:
н = √(с 2 – (а – в) 2 /4). Номер 2.
Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать
Периметр произвольной трапеции
Периметр произвольной трапеции, в которой AB=a , BC=b , CD=c , AD=d , имеет вид:
[ LARGE P_ = a + b + c + d ]
где:
P – периметр трапеции
a, b, c, d – стороны трапеции
Видео:В равнобедренную трапецию, периметр которой равен 180, а площадьравна 1620, можно вписать...Скачать
Вписанная окружность
Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и она делит боковую сторону точкой касания на два отрезка — и , то , то
Видео:Задание 26 Равнобедренная трапеция Окружности, вписанные в треугольникиСкачать
Решение задач о прямоугольной трапеции
Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 90 0 . Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.
Задача Даны три стороны, одна из которых перпендикулярная боковая.
Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.
Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.
Находим отрезок КД:
- КД = АД – АК = 6 – 1 = 5 (см)
Согласно теореме Пифагора:
- СД 2 =СК 2 +КД 2 =12 2 +5 2 =144+25=169
- СД = √169 = 13 (см)
Ответ: СД = 13 см
Задача Даны оба основания и угол при основании
Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.
- Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
- КД = АД – АК = 10 – 6 = 4 см
- cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
- Получаем СД = 4/√2/2 = 4√2 (см)
Ответ: СД = 4√2 см
Видео:КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать
Свойства и признаки равнобедренной трапеции
1. В равнобедренной трапеции углы при любом основании равны.
2. В равнобедренной трапеции длины диагоналей равны.
3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.
4. Около равнобедренной трапеции можно описать окружность.
5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Формула определения радиуса вписанной в трапецию окружности
1. Формула радиуса вписанной окружности через высоту:
r = | h |
2 |
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Видео:Трапеция и вписанная окружностьСкачать
Определение периметра прямоугольной трапеции
Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:
Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.
- опустим высоту из вершины С, высота CH = AB = 5см;
- исходя из рисунка 3, AH = BC = 7 см;
- HD = AD – AH = 10 – 7 = 3 см;
- далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
- подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.
Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:
- формула расчета длины основания через среднюю линию;
- формулы длин сторон через высоту и угол при нижнем основании трапеции;
- формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
- формулы длин сторон равнобедренной трапеции через площадь.
Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.
Видео:Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать
Известны: диагонали и углы между ними
Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:
Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:
н = (d1 2 * sin γ) / (а + в) или н = (d1 2 * sin δ) / (а + в). Номер 6.
Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:
н = (d1 2 * sin γ) / 2m или н = (d1 2 * sin δ) / 2m. Номер 6а.
Видео:Трапеция. Свойства. Задачи. Найти углы трапеции. ПериметрСкачать
Периметр трапеции
Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:
Периметр плоской фигуры — есть сумма всех сторон фигуры.
Чему равен периметр равнобедренной трапеции — то же самое — сумме всех ее сторон.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Найти периметр трапеции в задачах ЕГЭ
В задачах ЕГЭ вы найдете периметр трапеции. Например,
Задача 1
Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.
Решение:
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:
Где PABCD — периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2
Средняя линия трапеции — это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .
Ответ: 15.
Задача 2
Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.
Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.
Ответ: 11.
То есть мы сами с вами вывели лайфхак для решения этой задачи:
И обратный лайфхак:
Применим наш лайфхак 1 к решению следующей задачи?
Задача 3
Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.
Ответ: 7,5.
Задача 4
Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.
Решение. Периметр трапеции равен: АD+DC+CB+AB=PABCD (1)
В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB (2)
С учетом (2) равенство (1) можно записать в виде: 2(АD+CB)=PABCD (3)
Теперь давайте посмотрим на вот такой рисунок:
Видно, что сторона AD=2R, где R — радиус окружности.
Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.
Решаем уравнение, относительно R:
Ответ: 6,5
Задача 5
Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.
📸 Видео
Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать
ЕГЭ: Как найти высоту в равнобедренной трапеции, вписанной в круг. Матшкола 1 Ильвовского Д.М.Скачать
В равнобедренную трапецию вписана окружность, средняя линия трапеции 3, диагональ 5. Найти высоту трСкачать
№793. Боковые стороны трапеции равны 13 см и 15 см, а периметр равен 48 см. Найдите среднюю линиюСкачать
Трапеция, вписанная в окружностьСкачать