Как найти отрезок треугольника

Все формулы для треугольника
Содержание
  1. 1. Как найти неизвестную сторону треугольника
  2. 2. Как узнать сторону прямоугольного треугольника
  3. 3. Формулы сторон равнобедренного треугольника
  4. 4. Найти длину высоты треугольника
  5. Геометрия. Урок 3. Треугольники
  6. Определение треугольника
  7. Виды треугольников
  8. Отрезки в треугольнике
  9. Площадь треугольника
  10. Равнобедренный треугольник
  11. Равносторонний треугольник
  12. Прямоугольный треугольник
  13. Теорема Пифагора
  14. Примеры решений заданий из ОГЭ
  15. Треугольник. Формулы и свойства треугольников.
  16. Типы треугольников
  17. По величине углов
  18. По числу равных сторон
  19. Вершины углы и стороны треугольника
  20. Свойства углов и сторон треугольника
  21. Теорема синусов
  22. Теорема косинусов
  23. Теорема о проекциях
  24. Формулы для вычисления длин сторон треугольника
  25. Медианы треугольника
  26. Свойства медиан треугольника:
  27. Формулы медиан треугольника
  28. Биссектрисы треугольника
  29. Свойства биссектрис треугольника:
  30. Формулы биссектрис треугольника
  31. Высоты треугольника
  32. Свойства высот треугольника
  33. Формулы высот треугольника
  34. Окружность вписанная в треугольник
  35. Свойства окружности вписанной в треугольник
  36. Формулы радиуса окружности вписанной в треугольник
  37. Окружность описанная вокруг треугольника
  38. Свойства окружности описанной вокруг треугольника
  39. Формулы радиуса окружности описанной вокруг треугольника
  40. Связь между вписанной и описанной окружностями треугольника
  41. Средняя линия треугольника
  42. Свойства средней линии треугольника
  43. Периметр треугольника
  44. Формулы площади треугольника
  45. Формула Герона
  46. Равенство треугольников
  47. Признаки равенства треугольников
  48. Первый признак равенства треугольников — по двум сторонам и углу между ними
  49. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  50. Третий признак равенства треугольников — по трем сторонам
  51. Подобие треугольников
  52. Признаки подобия треугольников
  53. Первый признак подобия треугольников
  54. Второй признак подобия треугольников
  55. Третий признак подобия треугольников

Видео:Определение длины отрезкаСкачать

Определение длины отрезка

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти отрезок треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Как найти отрезок треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Как найти отрезок треугольника

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Как найти отрезок треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Как найти отрезок треугольника

Формулы для катета, ( b ):

Как найти отрезок треугольника

Формулы для гипотенузы, ( c ):

Как найти отрезок треугольника

Как найти отрезок треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Как найти отрезок треугольника

Как найти отрезок треугольника

Как найти отрезок треугольника

Видео:Найдите длину отрезкаСкачать

Найдите длину отрезка

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Как найти отрезок треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Как найти отрезок треугольника

Как найти отрезок треугольника

Формулы длины равных сторон , (a):

Как найти отрезок треугольника

Как найти отрезок треугольника

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Как найти отрезок треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Как найти отрезок треугольника

Формула длины высоты через сторону и угол, ( H ):

Как найти отрезок треугольника

Формула длины высоты через сторону и площадь, ( H ):

Как найти отрезок треугольника

Формула длины высоты через стороны и радиус, ( H ):

Видео:Сможешь найти длину отрезка?Скачать

Сможешь найти длину отрезка?

Геометрия. Урок 3. Треугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Как найти отрезок треугольника

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение треугольника
  • Виды треугольников
  • Отрезки в треугольнике

Видео:5 класс, 2 урок, Отрезок. Длина отрезка. ТреугольникСкачать

5 класс, 2 урок, Отрезок. Длина отрезка. Треугольник

Определение треугольника

Треугольник – многоугольник с тремя сторонами и тремя углами.

Как найти отрезок треугольника

Угол ∠ A – угол, образованный сторонами A B и A C и противолежащий стороне B C .

Угол ∠ B – угол, образованный сторонами B A и B C и противолежащий стороне A C .

Угол ∠ C – угол, образованный сторонами C B и C A и противолежащий стороне A B .

Видео:Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Виды треугольников

Треугольник остроугольный , если все три угла в треугольнике острые.

Треугольник прямоугольный , если у него один из углов прямой ( = 90 ° ) .

Треугольник тупоугольный , если у него один из углов тупой.

Как найти отрезок треугольника Как найти отрезок треугольникаКак найти отрезок треугольника

Основные свойства треугольника:

  • Против большей стороны лежит больший угол.
  • Против равных сторон лежат равные углы.
  • Сумма углов в треугольнике равна 180 ° .
  • Если продолжить одну из сторон треугольника, например, A C , и взять на продолжении стороны точку D , образуется внешний угол ∠ B C D к исходному углу ∠ A C B .

Видео:МАТЕМАТИКА 5 класс: Отрезок | Длина отрезка | ТреугольникСкачать

МАТЕМАТИКА 5 класс: Отрезок | Длина отрезка | Треугольник

Отрезки в треугольнике

Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.

Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.

Свойства биссектрис треугольника:

  • Биссектриса угла – геометрическое место точек, равноудаленных от сторон угла.
  • Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:

Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Свойства медиан треугольника:

  • Медиана разбивает треугольник на два равновеликих треугольника (два треугольника, имеющих одинаковую площадь).
  • Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.

Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.

Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.

Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Площадь треугольника

Площадь произвольного треугольника можно найти следующими способами:

    Полупроизведение стороны на высоту, проведенную к этой стороне.

Как найти отрезок треугольника

Как найти отрезок треугольника

Как найти отрезок треугольника

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Равнобедренный треугольник

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Как найти отрезок треугольника Как найти отрезок треугольникаКак найти отрезок треугольника

Свойства равноберенного треугольника:

  • В равнобедренном треугольнике углы при основании равны.
  • В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Равносторонний треугольник

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S = a 2 3 4

Высота равностороннего треугольника находится по формуле h = a 3 2

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него один из углов равен 90 ° .

Свойства прямоугольного треугольника:

  • Сумма двух острых углов треугольника равна 90 ° .
  • Катет, лежащий напротив угла в 30 ° , равен половине гипотенузы.
  • Если катет равен половине гипотенузы, он лежит напротив угла в 30 ° .

Видео:Натуральная величина отрезкаСкачать

Натуральная величина отрезка

Теорема Пифагора

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с треугольниками

Видео:8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольнике

Треугольник. Формулы и свойства треугольников.

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Типы треугольников

По величине углов

Как найти отрезок треугольника

Как найти отрезок треугольника

Как найти отрезок треугольника

По числу равных сторон

Как найти отрезок треугольника

Как найти отрезок треугольника

Как найти отрезок треугольника

Видео:Отрезок. Длина отрезка. Треугольник | Математика 5 класс #2 | ИнфоурокСкачать

Отрезок. Длина отрезка. Треугольник | Математика 5 класс #2 | Инфоурок

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Как найти отрезок треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Средняя линия. Теорема о средней линии треугольникаСкачать

Средняя линия. Теорема о средней линии треугольника

Медианы треугольника

Как найти отрезок треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Биссектрисы треугольника

Как найти отрезок треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Высоты треугольника

Как найти отрезок треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Как найти отрезок треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Как найти отрезок треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Как найти отрезок треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Как найти отрезок треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Как найти отрезок треугольника

Формула Герона

S =a · b · с
4R

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Как найти отрезок треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Поделиться или сохранить к себе: