Как найти отношение длины окружности к радиусу

Длина окружности

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.

Как найти отношение длины окружности к радиусу

Определение длины окружности

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Формула расчёта длинны окружности

Произвести расчёт окружности можно по следующей формуле:

r – радиус окружности

D – диаметр окружности

L – длина окружности

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Пример нахождения длинны окружности

Вычислить длину окружности, имеющей радиус 10 сантиметров.

Формула для вычисления дины окружности имеет вид:

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 31,4 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π, необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Длина окружности

Как найти отношение длины окружности к радиусу

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Видео:Площадь круга. Математика 6 класс.Скачать

Площадь круга. Математика 6 класс.

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 класс

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

Как найти отношение длины окружности к радиусу

π — число пи, примерно равное 3,14

S — площадь круга

Видео:Длина окружности. Площадь круга, 6 классСкачать

Длина окружности. Площадь круга, 6 класс

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Видео:+Как найти длину окружностиСкачать

+Как найти длину окружности

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Видео:Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать

Длина окружности. Практическая часть - решение задачи. 6 класс.

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

Как найти отношение длины окружности к радиусу

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 класс

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

Как найти отношение длины окружности к радиусу

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Видео:Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)Скачать

Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:
Как найти отношение длины окружности к радиусу

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Как найти отношение длины окружности к радиусуПодставим туда наши переменные и получим Как найти отношение длины окружности к радиусу

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Окружность

Привет, друг! Ниже собрана вся информация по окружности: что это такое, как найти ее величины, как круг связан с тригонометрией. Это поможет тебе еще лучше разобраться с этими темами, а также верно решать задачи! Время прочтения — 10 минут.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Что такое окружность?

Окружность — это множество всех точек на плоскости, находящихся на одинаковом расстоянии от данной точки, а ее радиусом называют отрезок, который соединяет любую её точку с центром (все радиусы окружности равны). У окружности также есть диаметр — отрезок, соединяющий две точки окружности и проходящий через её центр.

Выделяют также такое понятие как единичная окружность. Она представляет из себя такую окружность, центр которой располагается в начале координат, а ее радиус равен единице.

Есть еще один вид окружности — числовая. Это обычная единичная окружность, но с уже установленным соответствием между действительными числами и точками.

Видео:Отношение длины окружности к её диаметру. Площадь круга.Скачать

Отношение длины окружности к её диаметру. Площадь круга.

Как найти длину окружности

Зачастую в задачах просят найти длину окружности, как это сделать?

Так, для того чтобы найти длину окружности, нужно:

  1. Диаметр этой окружности умножить на , число ≈ 3,1415926535…
  1. Найти удвоенное произведение радиуса и числа

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Формулы:

Где r — это радиус окружности, а d — ее диаметр, а число — это математическая константа (отношение длины окружности к длине ее диаметра)

Чему равен радиус окружности

Радиус окружности необходимо знать, чтобы решить многие задачи, поэтому давай вместе разберем, как его можно найти.

  1. Через площадь окружности : R=s, где S — площадь круга, — это математическая константа, которая объяснена выше.
  2. Через длину круга: R=P2, где P — длина круга.
  3. Через диаметр окружности: R=d2, где d — диаметр.
  4. Через диагональ вписанного треугольника: R=d2, где d=a2 b2.
  5. Через сторону описанного квадрата: R= a2, где а — сторона описанного квадрата.
  6. Через стороны и площадь вписанного треугольника: R=abc4S, где abc — стороны вписанного треугольника, а S — его площадь.
  7. Через площадь и полупериметр описанного треугольника: R=sp, где S — площадь треугольника, а p — полупериметр.
  8. Через площадь сектора и его центральный угол: R=360Spa, где S — площадь сектора круга, α — его центральный угол.
  9. Через сторону вписанного правильного многоугольника: R=a2sin(180N), где a — сторона правильного многоугольника (все его стороны равны), N — количество сторон многоугольника.

Видео:Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Окружность в тригонометрии

Окружность используется и в тригонометрии:

Что значат на рисунке все обозначение?

  1. Присутствует перевод градусов в радианы (и наоборот). В полном круге — 360 градусов ( радиан);
  1. Значение косинуса угла — на оси Х, а значение синуса — на У;
  1. Синус и косинус имеют значения от -1 до 1;
  1. На тригонометрическом круге видно, что косинус как и синус — периодические (один период равен 2).

Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Что еще важно знать?

Полный круг — 360 градусов.

Точка с координатами (1;0) — угол 0 градусов соответствует углу ноль градусов, а точка с координатами (-1;0) соответствует углу 180 градусов, точка с координатами (0;1) — в 90 градусов.

Косинус угла — абсцисса точки на единичной окружности, которая соответствует приведенному углу.

Синус угла — ордината точки на единичной окружности, которая соответствует приведенному углу.

Потому как окружность единичная, то для любого угла и синус, и косинус находятся в пределах от -1 до 1. Так:

Из этого можно выделить основное тригонометрическое тождество:

cos^2 a + sin^2 a = 1

По рисунку видно, что

Как найти отношение длины окружности к радиусу,

Углы могут быть и больше 360 градусов. Например, угол 720 — это два полных оборота по часовой стрелке. Из этого можно сделать такой вывод:

Если же применять в этих формулах не градусы, а радианы, то:

Можно также по рисунку тригонометрической окружности определить тангенс угла и котангенс:

В результате, мы получаем таблицу:

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Углы поворота

Угол поворота — это угол, образованный положительным направлением оси OX и лучом OA.

Их величина не имеет зависимости от радиуса приведенной окружности.

Угол в первом квадранте(четверти круга), имеет все положительные значения тригонометрических функций.

Во втором квадранте все функции (кроме sin и cos) — отрицательные.

В третьем квадранте значения всех функций (помимо tg и ctg) меньше 0.

В четвертом квадранте все функции (кроме cos и sec) с отрицательным значением.

🎬 Видео

Круг - радиус, диаметр, длина окружностиСкачать

Круг -  радиус, диаметр, длина окружности
Поделиться или сохранить к себе: