Как найти косинус тупоугольного треугольника

Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

  • a² = b² + c² – 2b.c.cosα
  • b² = a² + c² – 2a.c.cosβ
  • c² = a² + b² – 2a.b.cosγ

Как найти косинус тупоугольного треугольника

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

cos α = cos 120º = — 1/2 (это значение можно найти в таблицах)

a² = 12² + 8² – 2×12×8×(- 1/2)

Длина третьей стороны — примерно 17,436 см.

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

Как найти косинус тупоугольного треугольника

cos β = (6² + 8² − 7²) / 2×6×8

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

  • b²+c²−a² 0, значит угол α — острый.

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Доказательство теоремы косинусов

Как найти косинус тупоугольного треугольника

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

  • две его стороны равны;
  • углы при основании равны.

Как найти косинус тупоугольного треугольника

Используем формулу теоремы косинусов

a² = b² + c² – 2b.c.cosα

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

Видео:Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

Видео:Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать

Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги Александровны

Теорема косинусов и синусов

Как найти косинус тупоугольного треугольника

О чем эта статья:

Видео:Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!Скачать

Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Как найти косинус тупоугольного треугольника

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

Как найти косинус тупоугольного треугольника

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

Как найти косинус тупоугольного треугольника

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:


Как найти косинус тупоугольного треугольника

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Как найти косинус тупоугольного треугольника

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Как найти косинус тупоугольного треугольника

Теорема косинусов может быть использована для любого вида треугольника.

Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Как найти косинус тупоугольного треугольника

Видео:Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать

Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Видео:КАК НАЙТИ КОСИНУС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? ОПРЕДЕЛЕНИЕ. ЗАДАЧА | ГЕОМЕТРИЯ 8 классСкачать

КАК НАЙТИ КОСИНУС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? ОПРЕДЕЛЕНИЕ. ЗАДАЧА | ГЕОМЕТРИЯ 8 класс

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Как найти косинус тупоугольного треугольника

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Как найти косинус тупоугольного треугольника

Из треугольника СМВ по теореме косинусов найдём СМ:
Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Как найти косинус тупоугольного треугольника

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

Как найти косинус тупоугольного треугольника

  • Если c 2 2 + b 2 , то ∠C — острый.

Как найти косинус тупоугольного треугольника

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Как найти косинус тупоугольного треугольникаДля плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

Как найти косинус тупоугольного треугольника

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

📸 Видео

Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать

Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)

Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать

Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

Нахождение косинуса и синуса угла в прямоугольном треугольнике

Синус, косинус и тангенс Решение задач по геометрииСкачать

Синус, косинус и тангенс Решение задач по геометрии

ЕГЭ ПЛАНИМЕТРИЯ ТУПОУГОЛЬНЫЙ ТРЕУГОЛЬНИК| НЕТИПИЧНЫЙ КОСИНУС УГЛА | ГАРМАШУКСкачать

ЕГЭ ПЛАНИМЕТРИЯ ТУПОУГОЛЬНЫЙ ТРЕУГОЛЬНИК| НЕТИПИЧНЫЙ КОСИНУС УГЛА  | ГАРМАШУК

Нахождение катета прямоугольного треугольникаСкачать

Нахождение катета прямоугольного треугольника
Поделиться или сохранить к себе: