Как найти косинус остроугольного треугольника

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Как найти косинус остроугольного треугольникаДля плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

Как найти косинус остроугольного треугольника

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Теорема косинусов и синусов

Как найти косинус остроугольного треугольника

О чем эта статья:

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Как найти косинус остроугольного треугольника

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

Как найти косинус остроугольного треугольника

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

Как найти косинус остроугольного треугольника

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:


Как найти косинус остроугольного треугольника

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Как найти косинус остроугольного треугольника

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Видео:КАК НАЙТИ КОСИНУС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? ОПРЕДЕЛЕНИЕ. ЗАДАЧА | ГЕОМЕТРИЯ 8 классСкачать

КАК НАЙТИ КОСИНУС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА? ОПРЕДЕЛЕНИЕ. ЗАДАЧА | ГЕОМЕТРИЯ 8 класс

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Как найти косинус остроугольного треугольника

Теорема косинусов может быть использована для любого вида треугольника.

Видео:Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать

Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги Александровны

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Как найти косинус остроугольного треугольника

Видео:Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать

Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

Как найти косинус остроугольного треугольника

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Как найти косинус остроугольного треугольника

Из треугольника СМВ по теореме косинусов найдём СМ:
Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Как найти косинус остроугольного треугольника

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

Как найти косинус остроугольного треугольника

  • Если c 2 2 + b 2 , то ∠C — острый.

Как найти косинус остроугольного треугольника

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Теорема косинусов для треугольника: формула и задачи

В данной публикации мы рассмотрим одну из главных теорем евклидовой геометрии, теорему косинусов, которая определяет соотношение сторон в треугольнике, а также, научимся применять ее на практике для решения задач.

Видео:Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать

Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1

Формулировка и формула теоремы

В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.

a 2 = b 2 + c 2 – 2 ⋅ b ⋅ c ⋅ cos α

Как найти косинус остроугольного треугольника

Видео:Известен косинус угла треугольника, найти сторонуСкачать

Известен косинус угла треугольника, найти сторону

Следствие из теоремы

Формула теоремы может применяться для того, чтобы найти косинус угла в треугольнике:

Как найти косинус остроугольного треугольника

При этом:

  • если b 2 + c 2 – a 2 > 0, значит угол α – острый;
  • если b 2 + c 2 – a 2 = 0, значит угол α равен 90 градусам (терема косинусов принимает вид Теоремы Пифагора);
  • если b 2 + c 2 – a 2 Примеры задач

Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.

Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 ⋅ 5 ⋅ 9 ⋅ cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона

Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.

Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:

Как найти косинус остроугольного треугольника

Следовательно, угол α = arccos (-1/6) ≈ 99,59°.

🎥 Видео

Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать

Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.

Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!Скачать

Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

КОСИНУС НА ПАЛЬЦАХ 🖐 #shorts #егэ #огэ #математика #профильныйегэСкачать

КОСИНУС НА ПАЛЬЦАХ 🖐 #shorts #егэ #огэ #математика #профильныйегэ

Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать

Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

Нахождение косинуса и синуса угла в прямоугольном треугольникеСкачать

Нахождение косинуса и синуса угла в прямоугольном треугольнике

ОГЭ Как найти косинус, если знаем синусСкачать

ОГЭ Как найти косинус, если знаем синус

Решение задач. Синус косинус тангенс котангенс 8 классСкачать

Решение задач. Синус косинус тангенс котангенс 8 класс
Поделиться или сохранить к себе: