Как найти дугу окружности если вписан треугольник

Треугольник вписанный в окружность

Как найти дугу окружности если вписан треугольник

Содержание
  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство
  12. Как найти длину дуги окружности ?
  13. Как найти дугу окружности вписанного треугольника
  14. Треугольник вписанный в окружность
  15. Определение
  16. Формулы
  17. Радиус вписанной окружности в треугольник
  18. Радиус описанной окружности около треугольника
  19. Площадь треугольника
  20. Периметр треугольника
  21. Сторона треугольника
  22. Средняя линия треугольника
  23. Высота треугольника
  24. Свойства
  25. Доказательство
  26. Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
  27. Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
  28. Формулы для радиуса окружности, вписанной в треугольник
  29. Вывод формул для радиуса окружности, вписанной в треугольник
  30. Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
  31. 💡 Видео

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Как найти дугу окружности если вписан треугольник

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Как найти дугу окружности если вписан треугольник

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Как найти длину дуги окружности ?

Как найти дугу окружности если вписан треугольник

r — радиус окружности

α — угол AOB, в градусах

Формула длины дуги ( L ):

Как найти дугу окружности если вписан треугольник

Калькулятор для расчета длины дуги окружности :

Формулы для окружности и круга:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Как найти дугу окружности вписанного треугольника

Видео:№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углыСкачать

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углы

Треугольник вписанный в окружность

Как найти дугу окружности если вписан треугольник

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Как найти дугу окружности если вписан треугольник

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Как найти дугу окружности если вписан треугольник

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Как найти дугу окружности если вписан треугольникСуществование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Как найти дугу окружности если вписан треугольникФормулы для радиуса окружности, вписанной в треугольник
Как найти дугу окружности если вписан треугольникВывод формул для радиуса окружности, вписанной в треугольник

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Как найти дугу окружности если вписан треугольник

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Как найти дугу окружности если вписан треугольник

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

Как найти дугу окружности если вписан треугольник

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Как найти дугу окружности если вписан треугольник

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Как найти дугу окружности если вписан треугольник

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Как найти дугу окружности если вписан треугольник

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Видео:Найти угол треугольника, вписанного во вписанную окружностьСкачать

Найти угол треугольника, вписанного во вписанную окружность

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

Как найти дугу окружности если вписан треугольник

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

Как найти дугу окружности если вписан треугольник.

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Как найти дугу окружности если вписан треугольник

ФигураРисунокФормулаОбозначения
Произвольный треугольникКак найти дугу окружности если вписан треугольник
Равнобедренный треугольникКак найти дугу окружности если вписан треугольник
Равносторонний треугольникКак найти дугу окружности если вписан треугольник
Прямоугольный треугольникКак найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Как найти дугу окружности если вписан треугольник.

Как найти дугу окружности если вписан треугольник

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Как найти дугу окружности если вписан треугольник.

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Как найти дугу окружности если вписан треугольник

Произвольный треугольник
Как найти дугу окружности если вписан треугольник
Равнобедренный треугольник
Как найти дугу окружности если вписан треугольник
Равносторонний треугольник
Как найти дугу окружности если вписан треугольник
Прямоугольный треугольник
Как найти дугу окружности если вписан треугольник
Произвольный треугольник
Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Как найти дугу окружности если вписан треугольник.

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Как найти дугу окружности если вписан треугольник.

Равнобедренный треугольникКак найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Равносторонний треугольникКак найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольникКак найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

Как найти дугу окружности если вписан треугольник

где a, b, c – стороны треугольника, r – радиус вписанной окружности, Как найти дугу окружности если вписан треугольник– полупериметр (рис. 6).

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

с помощью формулы Герона получаем:

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

Как найти дугу окружности если вписан треугольник

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

то, в случае равнобедренного треугольника, когда

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

Как найти дугу окружности если вписан треугольник

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

то, в случае равностороннего треугольника, когда

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Доказательство . Рассмотрим рисунок 9.

Как найти дугу окружности если вписан треугольник

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

Следовательно, принимая также во внимание теорему Пифагора, получаем

Как найти дугу окружности если вписан треугольник

Как найти дугу окружности если вписан треугольник

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Как найти дугу окружности если вписан треугольник

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Как найти дугу окружности если вписан треугольник

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Как найти дугу окружности если вписан треугольник

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Как найти дугу окружности если вписан треугольник

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Как найти дугу окружности если вписан треугольник

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

💡 Видео

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности
Поделиться или сохранить к себе: